Table 3 Neurophysiological features of each spike characterizing the process of creating objects (24D feature-vectors).
Number | Name | Algebraic definition | |
|---|---|---|---|
Shape | F1 | Waveform duration of the FD of the action potential | tP5 − tP1 |
F2 | Peak-to-valley amplitude of the FD of the action potential | \({{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}4}}-{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}2}}\) | |
F3 | Valley-to-valley amplitude of the FD of the action potential | \({{\rm{a}}}_{{{\rm{F}}{\rm{D}}}_{{\rm{P}}6}}-{{\rm{a}}}_{{{\rm{F}}{\rm{D}}}_{{\rm{P}}2}}\) | |
F4 | Correlation coefficient between the FD of the action potential (ap) and the reference spike-waveform (ref), considering their corresponding standard deviation σFD | \(\frac{{\sigma }_{{{\rm{FD}}}_{\mathrm{ap},\mathrm{ref}}}^{2}}{{\sigma }_{{{\rm{FD}}}_{{\rm{ap}}}}\cdot {\sigma }_{{{\rm{FD}}}_{{\rm{ref}}}}}\,\,\) | |
F5 | Logarithm of the positive deflection of the FD of the action potential | \(\mathrm{log}(\frac{{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}4}}-{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}2}}}{{{\rm{t}}}_{{\rm{P}}4}-{{\rm{t}}}_{{\rm{P}}2}})\) | |
F6 | Negative deflection of the FD of the action potential | \(\frac{{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}6}}-{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}4}}}{{{\rm{t}}}_{{\rm{P}}6}-{{\rm{t}}}_{{\rm{P}}4}}\) | |
F7 | Logarithm of the slope among valleys of the FD of the action potential | \(\mathrm{log}(\frac{{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}6}}-{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}2}}}{{{\rm{t}}}_{{\rm{P}}6}-{{\rm{t}}}_{{\rm{P}}2}})\) | |
F8 | Root-mean-square of pre-event amplitudes of the FD of the action potential | \(\sqrt{\frac{{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}1}}+{\sum }_{i\,=\,m-1}^{1}\,{{\rm{a}}}_{i}}{m}}\) | |
F9 | Negative slope ratio of the FD of the action potential | \((\frac{{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}2}}-{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}1}}}{{{\rm{t}}}_{{\rm{P}}2}-{{\rm{t}}}_{{\rm{P}}1}})/(\frac{{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}3}}-{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}2}}}{{{\rm{t}}}_{{\rm{P}}3}-{{\rm{t}}}_{{\rm{P}}2}})\) | |
F10 | Positive slope ratio of the FD of the action potential | \((\frac{{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}4}}-{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}3}}}{{{\rm{t}}}_{{\rm{P}}4}-{{\rm{t}}}_{{\rm{P}}3}})/(\frac{{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}5}}-{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}4}}}{{{\rm{t}}}_{{\rm{P}}5}-{{\rm{t}}}_{{\rm{P}}4}})\) | |
F11 | Peak-to-valley ratio of the FD of the action potential | \(\frac{{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}2}}}{{{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}4}}}\) | |
Phase | F 12 | Amplitude of the FD of the action potential relating to P1 | \({{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}1}}\) |
F13 | Amplitude of the FD of the action potential relating to P3 | \({{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}3}}\) | |
F14* | Amplitude of the FD of the action potential relating to P4 | \({{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}4}}\) | |
F 15 | Amplitude of the FD of the action potential relating to P5 | \({{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}5}}\) | |
F16 | Amplitude of the FD of the action potential relating to P6 | \({{\rm{a}}}_{{{\rm{FD}}}_{{\rm{P}}6}}\) | |
F17 | Amplitude of the SD of the action potential relating to P1 | \({{\rm{a}}}_{{{\rm{SD}}}_{{\rm{P}}1}}\) | |
F 18 * | Amplitude of the SD of the action potential relating to P3 | \({{\rm{a}}}_{{{\rm{SD}}}_{{\rm{P}}3}}\) | |
F19* | Amplitude of the SD of the action potential relative to P5 | \({{\rm{a}}}_{{{\rm{SD}}}_{{\rm{P}}5}}\) | |
Distribution | F20 | Inter-quartile range (Q3 − Q1) of the FD of the action potential, considering the percentiles \({{\rm{P}}}_{{75}_{{\rm{FD}}}}\) and \({{\rm{P}}}_{{25}_{{\rm{FD}}}}\) | \({{\rm{P}}}_{{75}_{{\rm{FD}}}}-{{\rm{P}}}_{{25}_{{\rm{FD}}}}\) |
F21 | Inter-quartile range (Q3 − Q1) of the SD of the action potential, considering the percentiles \({{\rm{P}}}_{{75}_{{\rm{SD}}}}\) and \({{\rm{P}}}_{{25}_{{\rm{SD}}}}\) | \({{\rm{P}}}_{{75}_{{\rm{SD}}}}-{P}_{{25}_{{\rm{SD}}}}\) | |
F22 | Kurtosis coefficient of the FD of the action potential, considering the fourth sampling moment of n amplitudes \({{\rm{a}}}_{{{\rm{FD}}}_{i}}\) about its mean \(\overline{{{\rm{a}}}_{{\rm{FD}}}}\), and the standard deviation σFD | \(\,\frac{{\sum }_{i=1}^{n}\,{({{\rm{a}}}_{{{\rm{FD}}}_{i}}-\overline{{{\rm{a}}}_{{\rm{FD}}}})}^{4}}{n\cdot {\sigma }_{{\rm{FD}}}^{4}}\) | |
F23 | Fisher asymmetry of the FD of the action potential, considering the third sampling moment of n amplitudes \({{\rm{a}}}_{{{\rm{FD}}}_{i}}\) about its mean \(\overline{{{\rm{a}}}_{{\rm{FD}}}}\), and the standard deviation σFD | \(\frac{{\sum }_{i=1}^{n}\,{({{\rm{a}}}_{{{\rm{FD}}}_{i}}-\overline{{{\rm{a}}}_{{\rm{FD}}}})}^{3}}{n\cdot {\sigma }_{{\rm{FD}}}^{3}}\) | |
F24 | Fisher asymmetry of the SD of the action potential, considering the third sampling moment of n amplitudes \({{\rm{a}}}_{{{\rm{FD}}}_{i}}\) about its mean \(\overline{{{\rm{a}}}_{{\rm{FD}}}}\), and the standard deviation σSD | \(\frac{{\sum }_{i=1}^{n}\,{({{\rm{a}}}_{{{\rm{SD}}}_{i}}-\overline{{{\rm{a}}}_{{\rm{SD}}}})}^{3}}{n\cdot {\sigma }_{{\rm{SD}}}^{3}}\) |