Table 2 Performance of Model predicting binary shock index using manually calculated CPD.(Coeff—Model coefficient of difference percent, AUC—Area Under the curve, PPV—Positive predictive value, NPV—Negative predictive value, Cut-off—Average Threshold of Ten Folds, NS- Non-shock, S- Shock).

From: Predicting Hemodynamic Shock from Thermal Images using Machine Learning

Time-point, (NS, S)

Coeff

AUC

Accuracy

Sensitivity

Specificity

PPV

NPV

Cut-off

Mean(SE)

Mean(SE)

Mean(SE)

Mean(SE)

Mean(SE)

Mean(SE)

Mean

0 hr (detection), (146, 107)

0.03

0.79 (0.02)

0.75(0.02)

0.69(0.05)

0.79(0.05)

0.72(0.05)

0.8(0.03)

0.47

3 hr (prediction), (141, 107)

0.01

0.79(0.04)

0.74(0.04)

0.72(0.05)

0.78(0.07)

0.73(0.06)

0.81(0.03))

0.45

6 hr (prediction), ((129, 109))

0.01

0.65(0.04)

0.66(0.02)

0.48(0.09)

0.81(0.06)

0.72(0.07)

0.71(0.05)

0.62

12 hr (prediction), (131, 118)

0.01

0.7(0.03)

0.69(0.02)

0.67(0.03)

0.68(0.04)

0.65(0.06)

0.7(0.03)

0.41