Table 2 Comparison of predictive performance for AUC from three different approaches: RF, FRFL and FRF with two different model constructions using CCLE data.

From: Functional random forest with applications in dose-response predictions

Drug

Correlation

MAE

RF

FRFL

FRF

RF

FRFL

FRF

Model parameters: #Tree = 150, m = 10, minimum leaf size = 10

Erlotinib

0.4408

0.4498

0.4641

0.0546

0.0541

0.0464

Nilotinib

0.3886

0.4318

0.4564

0.0465

0.0464

0.0376

PD-0325901

0.4716

0.5057

0.5658

0.1353

0.1335

0.1377

PLX-4720

0.2957

0.3137

0.4365

0.0494

0.0487

0.0396

TAE-684

0.2757

0.3385

0.3743

0.0728

0.0717

0.0684

Model parameters: #Tree = 500, m = 50, minimum leaf size = 5

Erlotinib

0.4381

0.4420

0.4701

0.0563

0.0557

0.0474

Nilotinib

0.4216

0.4393

0.4288

0.0470

0.0471

0.0391

PD-0325901

0.5928

0.5929

0.6381

0.1287

0.1282

0.1322

PLX-4720

0.3738

0.4195

0.5352

0.0492

0.0480

0.0393

TAE-684

0.3645

0.3888

0.4211

0.0711

0.0708

0.0679

  1. For FRFL and FRF, node cost is calculated using 8 dose regions. Bold values indicate the best performances.