Figure 4
From: Key Role of the Ocean Western Boundary currents in shaping the Northern Hemisphere climate

Energetic perspective of the Northern Hemisphere atmospheric response to OWBCs: (a) represents the wintertime response to the SST fronts (BCF- NF) of the lower-tropospheric temperature tendency (shaded, in K/day, see Method) due to the upward surface sensible heat flux superposed on its reversed (i.e. equatorward) gradient (contour in (K/day)/°latitude), and (b) represents the lower-tropospheric temperature tendency (shaded, in K/day, see Methods) due to horizontal thermal advection superimposed on its equatorward gradient (green contour in (K/day)/°latitude). The contours representing the equatorward temperature gradients in (a,b) are illustrated in dark green for positive values and light green for negative values. (c) represents the overall climatological mean of the zonally-averaged poleward total energy transport (in PW) for the BCF-experiment (solid lines) and NF-Experiment (dashed lines). The total poleward energy transport in (a) is computed for the atmosphere/ocean-coupled system (black), only by the atmosphere (red) and only by the ocean (blue, see Method). (d) Represents the decomposition of the total atmospheric poleward energy transport into sensible heat (SH, red), latent heat (LH, blue) and potential energy (green). The transport of the atmospheric kinetic energy is much smaller compared to the other terms and therefore neglected. (e) represents the decomposition of the atmospheric poleward heat transport into the contributions from the transient eddies (red), stationary eddies (blue) and steady mean meridional circulation (green). Only significant differences at 95%-level according to two-tailed t-tests are shaded for the tendencies in (a,b).