Table 3 Prediction accuracy of the PLSR and PCR models for EC based on moving-average data smoothing technique (MA) spectral smoothing.

From: Prediction of soil salinity with soil-reflected spectra: A comparison of two regression methods

Method

Calibration

Cross-validation

Independent Prediction

Number of predictors or factors

R2

RMSE

R2

RMSE

R2

RMSE

PLSR

1 + A

0.8745

0.2320

0.7492

0.4453

0.6088

0.4650

10

PCR

1 + A

0.7620

0.3195

0.5646

0.4701

0.5601

0.4931

19

PLSR

1 + A + B

0.8973

0.2098

0.5861

0.4354

0.5863

0.4782

10

PCR

1 + A + B

0.7081

0.3538

0.4133

0.5198

0.6087

0.4650

19

PLSR

1 + C

0.5150

0.4561

0.1769

0.6109

−0.0240

0.7522

3

PCR

1 + C

0.2856

0.5535

0.1478

0.6192

0.0299

0.7648

6

PLSR

1 + D

0.9013

0.2057

0.6119

0.4223

0.5792

0.4822

9

PCR

1 + D

0.7503

0.3273

0.5121

0.4726

0.5818

0.4807

20

PLSR

1 + E

0.9060

0.2008

0.5755

0.4435

0.5528

0.4971

9

PCR

1 + E

0.7257

0.3430

0.5140

0.4741

0.4376

0.5575

17

PLSR

1 + F

0.8900

0.2172

0.5782

0.4413

0.5095

0.5207

8

PCR

1 + F

0.7357

0.3367

0.5326

0.4649

0.4547

0.5490

16

  1. “Independent Prediction”stands for the accuracy of models by independent validation set (36 selected samples). “Number of predictors or factors” denotes the number of spectral principal components extracted. The number 1 represents the MA methods. 1 + A represents MA + log(1/X); 1 + A + B represents MA + log(1/X) + baseline correction; 1 + C represents MA + first derivative; 1 + D represents MA + area normalization; 1 + E represents MA + SNV; and 1 + F represents MA + MSC.