Figure 1 | Scientific Reports

Figure 1

From: Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model

Figure 1

Standard calibration techniques do not always yield the optimal gain and smoothing properties for a velocity Kalman filter. Here, we define optimal as minimizing the mean movement time. (A) Simulated cursor movements using an initial decoder that was calibrated on open-loop (OL) data, using a decoder recalibrated with data from the first closed-loop (CL) block, and using a decoder with optimal gain and smoothing parameters. Average movement times are indicated in parentheses. (B) Average movement time as a function of gain and smoothing for this particular task and simulated user. Continued re-calibration of the decoder for 5 blocks (ReCal 1–5) does not cause the gain and smoothing values to converge to the optimal setting. (C,D) Same plots as in A and B except with a larger target radius; in this case, higher gain and lower smoothing values are optimal.

Back to article page