Table 1 Predictive performance comparisons with different learning methods in Dataset 1.

From: Improved Classification of Blood-Brain-Barrier Drugs Using Deep Learning

Prediction performance in dataset 1

Method

Sigmoid-SVM

Poly-SVM

RBF-SVM

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

 

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

AUC

0.42 ± 0.08

0.79 ± 0.12

0.5252 ± 0.13

0.792 ± 0.12

0.81 ± 0.18

0.84 ± 0.09

0.88 ± 0.57

0.798 ± 0.21

0.84 ± 0.11

Accuracy

0.495 ± 0.15

0.51 ± 0.11

0.52 ± 0.17

0.72 ± 0.1

0.63 ± 0.14

0.73 ± 0.08

0.89 ± 0.46

0.77 ± 0.11

0.74 ± 0.11

F1

0.481 ± 0.17

0.5514 ± 0.12

0.607 ± 0.08

0.584 ± 0.14

0.37 ± 0.21

0.58 ± 0.11

0.76 ± 0.31

0.641 ± 0.15

0.73 ± 0.11

Method

KNN

Decision Tree (DT)

Deep Learning

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

 

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

AUC

0.795 ± 0.11

0.82 ± 0.08

0.791 ± 0.13

0.64 ± 0.15

0.69 ± 0.16

0.633 ± 0.09

0.98 ± 0.02

0.98 ± 0.01

0.979 ± 0.02

Accuracy

0.806 ± 0.08

0.71 ± 0.13

0.74 ± 0.11

0.574 ± 0.12

0.69 ± 0.14

0.58 ± 0.12

0.96 ± 0.02

0.965 ± 0.03

0.96 ± 0.02

F1

0.712 ± 0.07

0.68 ± 0.09

0.717 ± 0.09

0.567 ± 0.12

0.661 ± 0.09

0.568 ± 0.12

0.902 ± 0.06

0.891 ± 0.09

0.904 ± 0.04

  1. Each test data field shows average ± std of 1000 random splits of training and test data.