Table 1 Predictive performance comparisons with different learning methods in Dataset 1.
From: Improved Classification of Blood-Brain-Barrier Drugs Using Deep Learning
Prediction performance in dataset 1 | Method | Sigmoid-SVM | Poly-SVM | RBF-SVM | ||||||
Side Effects(SE) | Indications | SE + Indications | Side Effects(SE) | Indications | SE + Indications | Side Effects(SE) | Indications | SE + Indications | ||
| Â | Prediction | Prediction | Prediction | Prediction | Prediction | Prediction | Prediction | Prediction | Prediction | |
AUC | 0.42 ± 0.08 | 0.79 ± 0.12 | 0.5252 ± 0.13 | 0.792 ± 0.12 | 0.81 ± 0.18 | 0.84 ± 0.09 | 0.88 ± 0.57 | 0.798 ± 0.21 | 0.84 ± 0.11 | |
Accuracy | 0.495 ± 0.15 | 0.51 ± 0.11 | 0.52 ± 0.17 | 0.72 ± 0.1 | 0.63 ± 0.14 | 0.73 ± 0.08 | 0.89 ± 0.46 | 0.77 ± 0.11 | 0.74 ± 0.11 | |
F1 | 0.481 ± 0.17 | 0.5514 ± 0.12 | 0.607 ± 0.08 | 0.584 ± 0.14 | 0.37 ± 0.21 | 0.58 ± 0.11 | 0.76 ± 0.31 | 0.641 ± 0.15 | 0.73 ± 0.11 | |
Method | KNN | Decision Tree (DT) | Deep Learning | |||||||
Side Effects(SE) | Indications | SE + Indications | Side Effects(SE) | Indications | SE + Indications | Side Effects(SE) | Indications | SE + Indications | ||
| Â | Prediction | Prediction | Prediction | Prediction | Prediction | Prediction | Prediction | Prediction | Prediction | |
AUC | 0.795 ± 0.11 | 0.82 ± 0.08 | 0.791 ± 0.13 | 0.64 ± 0.15 | 0.69 ± 0.16 | 0.633 ± 0.09 | 0.98 ± 0.02 | 0.98 ± 0.01 | 0.979 ± 0.02 | |
Accuracy | 0.806 ± 0.08 | 0.71 ± 0.13 | 0.74 ± 0.11 | 0.574 ± 0.12 | 0.69 ± 0.14 | 0.58 ± 0.12 | 0.96 ± 0.02 | 0.965 ± 0.03 | 0.96 ± 0.02 | |
F1 | 0.712 ± 0.07 | 0.68 ± 0.09 | 0.717 ± 0.09 | 0.567 ± 0.12 | 0.661 ± 0.09 | 0.568 ± 0.12 | 0.902 ± 0.06 | 0.891 ± 0.09 | 0.904 ± 0.04 | |