Table 2 Predictive performance comparisons with different learning methods in Dataset 2.

From: Improved Classification of Blood-Brain-Barrier Drugs Using Deep Learning

Prediction performance in dataset 2

Method

Sigmoid-SVM

Poly-SVM

RBF-SVM

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

 

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

AUC

0.452 ± 0.08

0.53 ± 0.09

0.535 ± 0.13

0.6111 ± 0.08

0.61 ± 0.07

0.66 ± 0.09

0.398 ± 0.13

0.45 ± 0.09

0.45 ± 0.08

Accuracy

0.51 ± 0.11

0.691 ± 0.13

0.52 ± 0.11

0.602 ± 0.13

0.591 ± 0.11

0.59 ± 0.24

0.41 ± 0.12

0.432 ± 0.13

0.45 ± 0.11

F1

0.474 ± 0.13

0.51 ± 0.1

0.5221 ± 0.08

0.5201 ± 0.14

0.51 ± 0.12

0.47 ± 0.23

0.531 ± 0.14

0.512 ± 0.08

0.41 ± 0.13

Method

KNN

Decision Tree (DT)

Deep Learning

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

 

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

AUC

0.421 ± 0.15

0.47 ± 0.18

0.472 ± 0.15

0.56 ± 0.15

0.51 ± 0.12

0.51 ± 0.12

0.97 ± 0.02

0.9523 ± 0.03

0.971 ± 0.02

Accuracy

0.415 ± 0.16

0.445 ± 0.14

0.51 ± 0.15

0.57 ± 0.11

0.52 ± 0.15

0.52 ± 0.15

0.9621 ± 0.02

0.9235 ± 0.06

0.968 ± 0.03

F1

0.541 ± 0.09

0.535 ± 0.17

0.53 ± 0.21

0.54 ± 0.15

0.56 ± 0.16

0.45 ± 0.25

0.9008 ± 0.06

0.889 ± 0.08

0.911 ± 0.05

  1. Each test data field shows average ± std of 1000 random splits of training and test data.