Table 3 Predictive performance comparisons with different learning methods in Independent Dataset (Dataset 3).

From: Improved Classification of Blood-Brain-Barrier Drugs Using Deep Learning

Prediction performance in dataset 3

Method

Sigmoid-SVM

Poly-SVM

RBF-SVM

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

 

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

AUC

0.675 ± 0.15

0.72 ± 0.18

0.672 ± 0.16

0.7058 ± 0.19

0.71 ± 0.15

0.685 ± 0.12

0.71 ± 0.12

0.71 ± 0.16

0.69 ± 0.15

Accuracy

0.51 ± 0.05

0.64 ± 0.18

0.64 ± 0.02

0.671 ± 0.14

0.53 ± 0.13

0.54 ± 0.11

0.735 ± 0.18

0.63 ± 0.12

0.69 ± 0.11

F1

0.42 ± 0.06

0.542 ± 0.21

0.584 ± 0.09

0.521 ± 0.16

0.51 ± 0.2

0.41 ± 0.06

0.601 ± 0.21

0.62 ± 0.15

0.561 ± 0.16

Method

KNN

Decision Tree (DT)

Deep Learning

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

Side Effects(SE)

Indications

SE + Indications

 

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

Prediction

AUC

0.73 ± 0.03

0.71 ± 0.11

0.734 ± 0.16

0.568 ± 0.16

0.67 ± 0.18

0.568 ± 0.12

0.978 ± 0.02

0.98 ± 0.02

0.99 ± 0.01

Accuracy

0.7 ± 0.11

0.72 ± 0.15

0.74 ± 0.19

0.584 ± 0.2

0.66 ± 0.18

0.59 ± 0.18

0.978 ± 0.02

0.964 ± 0.03

0.98 ± 0.02

F1

0.73 ± 0.07

0.71 ± 0.11

0.692 ± 0.11

0.516 ± 0.13

0.64 ± 0.16

0.519 ± 0.15

0.91 ± 0.09

0.896 ± 0.1

0.918 ± 0.08

  1. Each test data field shows average ± std of 1000 random splits of training and test data.