Table 1 Summary of the variables in the model.

From: A new analytical model for flow in acidized fractured-vuggy porous media

Defined parameters

Expressions

Dimensionless time, tD

\({t}_{{\rm{D}}}={k}_{{\rm{F}}}t/[({\phi }_{{\rm{M}}}{C}_{{\rm{M}}}+{\phi }_{{\rm{F}}}{C}_{{\rm{F}}}+{\phi }_{{\rm{v}}}{C}_{{\rm{v}}})\mu {r}_{{\rm{w}}}^{2}]\)

Dimensionless pressure, pD

\({p}_{{\rm{D}}}=2{\rm{\pi }}{k}_{{\rm{F}}}h({p}_{{\rm{0}}}-p)/(qB\mu )\)

Dimensionless radius, rD

\({r}_{{\rm{D}}}=r/{r}_{{\rm{w}}}\)

Diffusivity ratio between the two regions, η1D

\({\eta }_{{\rm{1D}}}={C}_{{\rm{t1}}}{\phi }_{1}/({\phi }_{{\rm{M}}}{C}_{{\rm{M}}}+{\phi }_{{\rm{F}}}{C}_{{\rm{F}}}+{\phi }_{{\rm{v}}}{C}_{{\rm{v}}})\)

Fracture storage capacitance coefficient, ηFD

\({\eta }_{{\rm{FD}}}={C}_{{\rm{F}}}{\phi }_{{\rm{F}}}/({\phi }_{{\rm{M}}}{C}_{{\rm{M}}}+{\phi }_{{\rm{F}}}{C}_{{\rm{F}}}+{\phi }_{{\rm{v}}}{C}_{{\rm{v}}})\)

Matrix storage capacitance coefficient, ηMD

\({\eta }_{{\rm{MD}}}={C}_{{\rm{M}}}{\phi }_{{\rm{M}}}/({\phi }_{{\rm{M}}}{C}_{{\rm{M}}}+{\phi }_{{\rm{F}}}{C}_{{\rm{F}}}+{\phi }_{{\rm{v}}}{C}_{{\rm{v}}})\)

Vug storage capacitance coefficient, ηvD

\({\eta }_{{\rm{vD}}}={C}_{{\rm{v}}}{\phi }_{{\rm{v}}}/({\phi }_{{\rm{M}}}{C}_{{\rm{M}}}+{\phi }_{{\rm{F}}}{C}_{{\rm{F}}}+{\phi }_{{\rm{v}}}{C}_{{\rm{v}}})\)

Permeability ratio, M1

\({M}_{1}={k}_{{\rm{1}}}/{k}_{{\rm{F}}}\)

Fracture-matrix inter-porosity coefficient, λFM

\({\lambda }_{{\rm{FM}}}={\alpha }_{{\rm{FM}}}{r}_{{\rm{w}}}^{2}{k}_{{\rm{M}}}/{k}_{{\rm{F}}}\)

Fracture-vug inter-porosity coefficient, λFv

\({\lambda }_{{\rm{Fv}}}={\alpha }_{{\rm{Fv}}}{r}_{{\rm{w}}}^{2}{k}_{{\rm{v}}}/{k}_{{\rm{F}}}\)