Table 4 Results of the complex models fitted in Dataset 1 and 2.

From: Boundary effects of expectation in human pain perception

Polynomial mixed model: PEsub

Predictor

Dataset 1

Dataset 2

\(\hat{{\boldsymbol{\beta }}}\)

SE

Sequential P-value*

\(\hat{{\boldsymbol{\beta }}}\)

SE

Sequential P-value*

Intercept

0.05

0.14

0.01

−0.19

0.15

<0.0001

PE

−0.39

0.046

<0.0001

−0.43

0.05

<0.0001

Trial

−0.005

0.0013

<0.0001

−0.003

0.0015

0.0016

PE2

0.045

0.015

<0.0001

−0.02

0.015

<0.0001

PE3

0.002

0.001

<0.0001

0.007

0.001

<0.0001

PE4

−0.002

0.0004

<0.0001

0.00007

0.0004

0.0326

PExTrial

0.0008

0.0005

<0.0001

0.0028

0.0006

<0.0001

PE2xTrial

0.0003

0.0002

0.11

−0.0001

0.0002

0.17

PE3xTrial

0.00001

0.00002

0.61

−0.00006

0.00002

0.003

PE4xTrial

0.00001

0.000006

0.03

0.000006

0.000006

0.30

AIC

7019.382

7018.041

BIC

7099.065

7097.137

Log-likelihood

−3495.691

−3495.021

  1. Predictor: the predictor variable entered into the complex model; \(\hat{{\rm{\beta }}}\): the estimated beta coefficient; SE: standard error of \(\hat{{\rm{\beta }}}\); Sequential P-value: indicates whether a predictor variable significantly predicts the data or not. Sequential P-values are more appropriate to use when interaction terms are involved because their calculation considers the other variables included in the model.