Table 2 Evaluation of performance per class in feature subset of BE in four algorithms.

From: Establishment and evaluation of prediction model for multiple disease classification based on gut microbial data

 

CRC

HIV1

JIA

ME/CFS

MS

Stroke

Average

Accuracy

LogitBoost

96.84 ± 0.43

99.71 ± 0.14

98.52 ± 0.22

96.93 ± 0.46

98.28 ± 0.29

98.32 ± 0.46

98.1 ± 0.33

LMT

95.93 ± 0.3

98.66 ± 0.22

98.95 ± 0.22

96.26 ± 0.57

98.18 ± 0.44

98.8 ± 0.22

97.8 ± 0.33

SVM

95.59 ± 0.5

98.85 ± 0.25

98.28 ± 0.38

96.46 ± 0.08

98.08 ± 0.22

98.75 ± 0.22

97.67 ± 0.28

KNN

90.28 ± 0.3

97.27 ± 0.43

97.27 ± 0

94.73 ± 0.36

96.41 ± 0.14

96.55 ± 0.5

95.42 ± 0.29

FPR

 

CRC

HIV1

JIA

ME/CFS

MS

Stroke

Average

LogitBoost

3.7 ± 0.83

0.26 ± 0.11

0.85 ± 0.09

1.18 ± 0.24

0.4 ± 0.09

1.14 ± 0.28

1.26 ± 0.27

LMT

3.93 ± 0.4

0.85 ± 0.3

0.6 ± 0

1.7 ± 0.41

0.7 ± 0.43

0.9 ± 0.18

1.45 ± 0.29

SVM

4.77 ± 0.48

0.59 ± 0.2

0.8 ± 0.09

1.59 ± 0.09

0.9 ± 0.15

0.6 ± 0.1

1.54 ± 0.19

KNN

12.93 ± 0.23

1.83 ± 0.49

1.35 ± 0.15

0.87 ± 0.32

0.4 ± 0.17

2.34 ± 0.18

3.29 ± 0.26

FNR

 

CRC

HIV1

JIA

ME/CFS

MS

Stroke

Average

LogitBoost

2.28 ± 0.38

0.36 ± 0.31

16.09 ± 3.98

28.47 ± 9.62

32.18 ± 7.18

3.78 ± 1.48

13.86 ± 3.82

LMT

4.31 ± 0.22

2.69 ± 0

11.49 ± 5.27

31.25 ± 3.61

27.59 ± 3.45

2.36 ± 1.64

13.28 ± 2.37

SVM

3.8 ± 0.66

2.69 ± 1.08

22.99 ± 7.18

29.86 ± 1.2

25.29 ± 1.99

3.78 ± 0.82

14.74 ± 2.16

KNN

4.44 ± 0.44

5.2 ± 0.31

34.48 ± 3.45

64.58 ± 2.08

77.01 ± 5.27

7.8 ± 2.56

32.25 ± 2.35

  1. The model was validated by 10-fold cross-validation and repeated three times. Values represent the mean of accuracy ± variance.