Table 1 Global tissue properties from n = 6 healthy brain hemispheres (healthy networks) and tumor specimens (full networks and exclusively tumor cores).

From: Glioblastoma multiforme restructures the topological connectivity of cerebrovascular networks

 

V〉 mm3

fVV〉%

MVD〉 · 103 mm−3

\({{\boldsymbol{\rho }}}_{{\boldsymbol{L}}}\)〉 mm−2

\({{\boldsymbol{\rho }}}_{{\boldsymbol{A}}}\)〉 mm−1

\(\bar{{\boldsymbol{R}}}\)〉 μm

l〉 μm

A〉 μm2

\(\tilde{{\boldsymbol{\tau }}}\)

\({{\boldsymbol{\tau }}}_{{\bf{95}}}\)

Healthy networks

14.7 ± 4.1

10.3 ± 3.7

53 ± 10

980 ± 99

25.4 ± 10.0

\(4.9\begin{array}{c}+1.7\\ -1.2\end{array}\)

\(19\begin{array}{c}+15\\ -9\end{array}\)

\(505\begin{array}{c}+472\\ -240\end{array}\)

1.071

1.453

U87 full networks

8.3 ± 4.3

7.2 ± 1.6

38 ± 12

734 ± 145

16.8 ± 4.4

\(4.9\begin{array}{c}+1.7\\ -1.2\end{array}\)

\(20\begin{array}{c}+16\\ -10\end{array}\)

\(547\begin{array}{c}+566\\ -267\end{array}\)

1.079

1.463

U87 core networks

0.3 ± 0.3

3.0 ± 1.4

11 ± 8

268 ± 146

6.1 ± 3.9

\(5.4\begin{array}{c}+2.2\\ -1.5\end{array}\)

\(25\begin{array}{c}+24\\ -13\end{array}\)

\(806\begin{array}{c}+1089\\ -446\end{array}\)

1.080

1.481

GL261 full networks

2.8 ± 1.0

4.8 ± 0.9

23 ± 7

413 ± 74

13.8 ± 8.4

\(5.0\begin{array}{c}+1.7\\ -1.3\end{array}\)

\(18\begin{array}{c}+16\\ -9\end{array}\)

\(491\begin{array}{c}+466\\ -235\end{array}\)

1.070

1.553

GL261 core networks

0.3 ± 0.2

1.9 ± 0.1

13 ± 9

214 ± 103

7.5 ± 5.7

\(4.4\begin{array}{c}+1.3\\ -1.0\end{array}\)

\(17\begin{array}{c}+16\\ -8\end{array}\)

\(386\begin{array}{c}+361\\ -177\end{array}\)

1.066

1.557

  1. Means with standard deviation (SD) are given for the tissue volume of each specimen V (after shrinkage from clearing), fractional vessel volume fVV, microvascular density MVD, total vessel length density \({\rho }_{L}\) (in mm/mm3), and vascular surface density \({\rho }_{A}\) (in mm2/mm3). Arithmetic means and average directed deviations of geometric vessel properties with log-normal distributions, namely mean radius \(\bar{r}\), segment length l and surface area A. The exponentially distributed segment tortuosity \(\tau \) is characterized by the median \(\tilde{\tau }\) and 95%-quantile \({\tau }_{95}\).