Table 1 The topological features of six real multiplex networks. In the table, i is the number of layers, N is the number of nodes and E is the number of edges in each layer.

From: Application of hyperbolic geometry in link prediction of multiplex networks

 

i

N

|E|

〈k〉

S

H

Γ

T

Vicker

1

29

240

16.5

0.59

1.09

3.5

0.75

2

29

126

8.69

0.31

1.27

3.5

0.85

3

29

152

10.48

0.37

1.25

2.64

0.75

Lazega

1

71

717

20.19

0.28

1.16

3.5

0.75

2

69

399

11.56

0.17

1.31

3.5

0.5

3

71

726

20.45

0.29

1.16

3.5

0.8

CKM

1

215

480

2.23

0.02

1.61

3.04

0.55

2

231

565

2.44

0.021

1.44

3.5

0.45

3

227

504

2.22

0.019

1.33

3.5

0.35

CElegans

1

253

516

4.07

0.016

2.15

3.13

0.65

2

260

888

6.83

0.026

1.78

3.35

0.85

3

278

1703

12.25

0.044

1.67

2.79

0.85

Rattus

1

2035

3014

1.48

0.001

5.86

2.62

0.35

2

1017

1093

1.07

0.002

3.99

2.14

0.25

SacchPomb

1

971

1686

1.73

0.003

2.72

2.92

0.9

2

347

404

1.16

0.006

1.93

2.85

0.9

3

2402

7502

3.12

0.002

3.92

2.68

0.25

  1. k〉 represents the average degree, S is the density of each layer based on \(({\boldsymbol{S}}=\frac{2{\boldsymbol{E}}}{{\boldsymbol{N}}({\boldsymbol{N}}-1)})\) and H is the degree heterogeneity obtained as \((H=\frac{\langle {k}^{2}\rangle }{{\langle k\rangle }^{2}})\), T is the temperature and γ is the power-law coefficient.