Table 2 Boundary position errors (in pixels) for each of the semantic segmentation methods with comparison to the baseline.

From: Automatic choroidal segmentation in OCT images using supervised deep learning methods

Method

ILM

RPE

CSI

ME

MAE

ME

MAE

ME

MAE

Standard

−0.07 (0.22)

0.51 (0.10)

−0.10 (0.19)

0.45 (0.12)

0.85 (2.45)

2.86 (2.01)

Standard [CE]

0.07 (0.25)

0.51 (0.11)

−0.03 (0.20)

0.45 (0.11)

0.19 (2.24)

2.58 (1.65)

Residuals

0.05 (0.23)

0.50 (0.11)

−0.14 (0.19)

0.45 (0.11)

0.02 (2.31)

2.59 (1.58)

Residuals [CE]

−0.21 (0.24)

0.53 (0.09)

−0.09 (0.29)

0.46 (0.22)

0.68 (2.05)

2.53 (1.52)

RNN

−0.25 (0.22)

0.55 (0.09)

−0.27 (0.19)

0.49 (0.13)

1.05 (2.35)

2.56 (1.89)

RNN [CE]

−0.11 (0.24)

0.51 (0.09)

−0.25 (0.19)

0.48 (0.12)

0.42 (2.42)

2.59 (1.92)

cSE

0.02 (0.68)

0.54 (0.63)

−0.08 (0.18)

0.44 (0.11)

0.59 (2.53)

2.73 (1.97)

cSE [CE]

−0.15 (0.28)

0.52 (0.16)

−0.21 (0.21)

0.47 (0.12)

0.41 (2.10)

2.57 (1.57)

sSE

−0.03 (0.22)

0.51 (0.08)

−0.16 (0.18)

0.46 (0.12)

0.02 (2.61)

2.84 (1.83)

sSE [CE]

−0.08 (0.36)

0.52 (0.26)

−0.27 (0.21)

0.50 (0.13)

0.81 (2.33)

2.72 (1.84)

scSE

−0.04 (0.33)

0.53 (0.24)

−0.16 (0.20)

0.46 (0.12)

0.34 (2.30)

2.60 (1.68)

scSE [CE]

−0.16 (0.23)

0.52 (0.09)

0.13 (0.20)

0.46 (0.11)

0.19 (2.20)

2.60 (1.51)

Combined

0.06 (0.22)

0.50 (0.09)

−0.07 (0.20)

0.44 (0.12)

1.10 (2.71)

2.69 (2.14)

Combined [CE]

−0.03 (0.24)

0.51 (0.09)

−0.19 (0.20)

0.47 (0.12)

1.25 (2.06)

2.53 (1.52)

Baseline37

−0.27 (0.41)

0.58 (0.36)

−1.14 (0.65)

1.23 (0.60)

−3.64 (8.62)

5.82 (7.77)

  1. Mean error (ME) and mean absolute error (MAE) are reported in terms of mean value and (per B-scan standard deviation) for each of the three boundaries. [CE] indicates that the network was trained and tested with images pre-processed using contrast enhancement. The best result for each boundary is highlighted in bold text.