Table 2 Parameters of the log–logistic equationsa used to calculate the concentration (µM) of the ALS-inhibiting herbicides needed to inhibit the ALS activity by 50% (I50) in two biotypes (S, susceptible; R, resistant) of E. heterophylla.

From: Target site as the main mechanism of resistance to imazamox in a Euphorbia heterophylla biotype

Herbicideb

Biotype

c

d

b

R2aj

P value

I50

RF

Bensulfuron (SU)

S

100.0 ± 5.1

2.05 ± 0.11

0.99

<0.0001

1.5 ± 0.1

12.5

R

7.1 ± 0.3

100.8 ± 7.3

1.36 ± 0.08

0.99

<0.0001

19.1 ± 0.7

Bispyribac (PTB)

S

10.4 ± 0.5

101.0 ± 3.1

0.99 ± 0.05

0.98

<0.0001

137.7 ± 6.7

2.0

R

21.9 ± 1.1

100.1 ± 4.9

2.31 ± 0.10

0.99

<0.0001

269.3 ± 6.4

Florasulam (TP)

S

101.5 ± 3.9

1.18 ± 0.04

0.99

<0.0001

1.3 ± 0.1

524.7

R

16.9 ± 0.7

100.8 ± 1.2

0.93 ± 0.04

0.98

<0.0001

692.6 ± 11.1

Flucarbazone

(SCT)

S

3.9 ± 0.2

100.2 ± 6.8

0.80 ± 0.02

0.99

<0.0001

20.7 ± 1.0

17.3

R

12.5 ± 0.6

100.2 ± 2.6

1.28 ± 0.04

0.99

<0.0001

358.3 ± 9.5

Imazamox (IMI)

S

1.8 ± 0.1

100.0 ± 1.9

0.56 ± 0.03

0.98

<0.0001

33.7 ± 1.0

16.0

R

19.6 ± 1.0

100.2 ± 3.1

0.17 ± 0.01

0.99

<0.0001

538.4 ± 8.1

  1. aY = c + {(d − c)/[1 + (x/g)b]} (four parameters) where: c and d are the coefficient corresponding to the lower and upper asymptotes, respectively; b is the slope of the line, x the herbicide concentration, and g is the herbicide concentration at the inflection point, hence the I50. Regression analyses adjusted to a model of three-parameters (Y = d/1 + (x/g)) assuming that the lower limit is zero. bALS chemical classes: sulfonylureas (SU), imidazolinones (IMI), triazolopyrimidines (TP), pyrimidinylthiobenzoates (PTB) and sulfonylamino-carbonyl-triazolinones (SCT). ±Standard error of the mean (n = 5). R2aj = 1 − (sums of squares of the regression/corrected total sums of squares). P value = significance level of the nonlinear model. RF = Resistance factor = I50R/I50S.