Table 1 Summary of the relevant parameters and of the corresponding default values assumed for the numerical simulations performed in this work, chosen consistently with ref.17. Here e.c.p. is a short-hand notation for electrochemical potential.

From: Optimal efficiency of the Q-cycle mechanism around physiological temperatures from an open quantum systems approach

Parameter

Description

Value

Parameter

Description

Value

\({\epsilon }_{Q0}\)

electron binding energy on \({\rm{PQ}}\)

\(280\ \)meV

\({E}_{Q0}\)

proton binding energy on \({\rm{PQ}}\)

\(822\ \)meV

\({\mu }_{Fd}\)

e.c.p. of Fd pool

\(410\ \)meV

\({\mu }_{Pc}\)

e.c.p. of Pc pool

\(-440\ \)meV

\({\mu }_{N}\)

e.c.p. of N-side protons

\(-75\ \)meV

\({\mu }_{P}\)

e.c.p. of P-side protons

\(75\ \)meV

\({\epsilon }_{L}^{{\rm{^{\prime} }}}\)

Site L electron binding energy

\(360\ \)meV

\({\epsilon }_{H}^{{\rm{^{\prime} }}}\)

Site H electron binding energy

\(220\ \)meV

\({\epsilon }_{A}^{{\rm{^{\prime} }}}\)

Site A electron binding energy

\(465\ \)meV

\({\epsilon }_{B}^{{\rm{^{\prime} }}}\)

Site B electron binding energy

\(-495\ \)meV

\({\Delta }_{AQ}\)

A-\({\rm{PQ}}\)tunneling rate

\(0.10\ \)meV

\({\Delta }_{BQ}\)

B-\({\rm{PQ}}\)tunneling rate

\(0.10\ \)meV

\({\Delta }_{LQ}\)

L-\({\rm{PQ}}\)tunneling rate

\(0.06\ \)meV

\({\Delta }_{HQ}\)

H-\({\rm{PQ}}\)tunneling rate

\(0.06\ \)meV

\({\Delta }_{LH}\)

L-H tunneling rate

\(0.10\ \)meV

\({\lambda }_{AQ}\)

A-\({\rm{PQ}}\)reorganization energy

\(100\ \)meV

\({\lambda }_{BQ}\)

B-\({\rm{PQ}}\)reorganization energy

\(100\ \)meV

\({\lambda }_{LQ}\)

L-\({\rm{PQ}}\)reorganization energy

\(100\ \)meV

\({\lambda }_{HQ}\)

H-\({\rm{PQ}}\)reorganization energy

\(100\ \)meV

\({\lambda }_{LH}\)

L-H reorganization energy

\(250\ \)meV

\({V}_{P}\)

surface potential on P-side

\(140\ \)meV

\({V}_{N}\)

surface potential on N-side

\(120\ \)meV

\({U}_{ee}\)

electron repulsion energy on \({\rm{PQ}}\)

\(305\ \)meV

\({U}_{pp}\)

proton repulsion energy on \({\rm{PQ}}\)

\(76.30\ \)meV

\({U}_{ep}\)

electron-proton attraction energy

\(610\ \)meV

\({U}_{LH}\)

L-H electron repulsion energy

\(240\ \)meV

\({\gamma }_{Fd}\)

Fd pool electron transfer rate

\(1{0}^{-4}\ \)meV

\({\gamma }_{Pc}\)

Pc pool electron transfer rate

\(1{0}^{-4}\ \)meV

\({\Gamma }_{P}\)

P-side proton transfer rate

\(0.002\ \)meV

\({\Gamma }_{N}\)

N-side proton transfer rate

\(0.002\ \)meV

\({U}_{ch0}\)

hydrophobic confining energy

\(770\ \)meV

\({U}_{w0}\)

membrane confining energy

\(500\ \)meV

\({x}_{ch}\)

hydrophobic confining position

\(1.70\ \)nm

\({x}_{w}\)

membrane confining position

\(2.70\ \)nm

\({l}_{ch}\)

hydrophobic confining length

\(0.05\ \)nm

\({l}_{w}\)

membrane confining length

\(0.10\ \)nm

\({l}_{p}\)

proton coupling decay length

\(0.25\ \)nm

\({l}_{e}\)

electron coupling decay length

\(0.25\ \)nm

\(T\)

temperature

\(25\ \)meV

\(\zeta \)

drag coefficient

\(8.55\ \frac{\,{\rm{meV}}\mu {\rm{s}}}{{{\rm{nm}}}^{2}}\)