Table 3 Statistical results of the 3-class classification models for CLr prediction.

From: Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor

Model

Selected descriptors (n)

Training or Test set

Parameter

CR type

RFa (Model_CLr_CR)

SVMa

ANNa

PLSa

Without fu,p

15

Training

Kappa

—

0.34

0.34

0.32

0.29

Test

Kappa

—

0.32b

0.19

0.18

0.22

Sensitivity

R

0.56

0.56

0.56

0.50

IM

0.29

0.12

0.41

0.18

S

0.75

0.69

0.47

0.75

Balanced Accuracy

R

0.7

0.69

0.68

0.68

IM

0.58

0.50

0.59

0.54

S

0.68

0.58

0.52

0.59

  1. aRF, Random forest; SVM, Support Vector Machine; ANN, artificial neural network; PLS, partial least square.
  2. bThe highest Kappa shown in the test set.