Table 2 PSR of each frequency component of ZG85 ~ ZG88, G3 and T1 cumulative displacements.

From: Forecasting of landslide displacements using a chaos theory based wavelet analysis-Volterra filter model

Displacements

Reconstructed phase spaces (input variables)

Output variables

ZG85

\({X}_{a2,\,i}^{ZG85}=({x}_{a2,\,i}^{ZG85},{x}_{(a2,\,i-1)}^{ZG85}),i=2,3,\cdots ,113\)

\({x}_{a2,\,(i+1)}^{ZG85}\)

\({X}_{d1,\,i}^{ZG85}=({x}_{d1,\,i}^{ZG85},\,{x}_{d1,\,(i-1)}^{ZG85},\,{x}_{d1,\,(i-2)}^{ZG85},\,{x}_{d1,\,(i-3)}^{ZG85}),i=4,5,\cdots ,113\)

\({x}_{d1,\,(i+1)}^{ZG85}\)

\({X}_{d2,\,i}^{ZG85}=({x}_{d2,\,i}^{ZG85},\,{x}_{d2,\,(i-1)}^{ZG85},\,{x}_{d2,\,(i-2)}^{ZG85},\,{x}_{d2,\,(i-3)}^{ZG85}),i=4,5,\cdots ,113\)

\({x}_{d2,\,(i+1)}^{ZG85}\)

ZG86

\({X}_{a2,\,i}^{ZG86}=({x}_{a2,\,i}^{ZG86},{x}_{(a2,\,i-1)}^{ZG86}),i=2,3,\cdots ,113\)

\({x}_{a2,\,(i+1)}^{ZG86}\)

\({X}_{d1,\,i}^{ZG86}=({x}_{d1,\,i}^{ZG86},\,{x}_{d1,\,(i-1)}^{ZG86},\,{x}_{d1,\,(i-2)}^{ZG86},\,{x}_{d1,\,(i-3)}^{ZG86},\,{x}_{d1,\,(i-4)}^{ZG86}),i=5,6,\cdots 113\)

\({x}_{d1,\,(i+1)}^{ZG86}\)

\({X}_{d2,\,i}^{ZG86}=({x}_{d2,\,i}^{ZG86},\,{x}_{d2,\,(i-1)}^{ZG86},\,{x}_{d2,\,(i-2)}^{ZG86}),i=3,4,\cdots ,113\)

\({x}_{d2,\,(i+1)}^{ZG86}\)

ZG87

\({X}_{a2,\,i}^{ZG87}=({x}_{a2,\,i}^{ZG87},{x}_{(a2,\,i-1)}^{ZG87}),i=2,3,\cdots ,113\)

\({x}_{a2,\,(i+1)}^{ZG87}\)

\({X}_{d1,\,i}^{ZG87}=({x}_{d1,\,i}^{ZG87},\,{x}_{d1,\,(i-1)}^{ZG87},\,{x}_{d1,\,(i-2)}^{ZG87},\,{x}_{d1,\,(i-3)}^{ZG87},\,{x}_{d1,\,(i-4)}^{ZG87}),i=5,6,\cdots 113\)

\({x}_{d1,\,(i+1)}^{ZG87}\)

\({X}_{d2,\,i}^{ZG87}=({x}_{d2,\,i}^{ZG87},\,{x}_{d2,\,(i-1)}^{ZG87},\,{x}_{d2,\,(i-2)}^{ZG87},\,{x}_{d2,\,(i-3)}^{ZG87}),i=4,5,\cdots ,113\)

\({x}_{d2,\,(i+1)}^{ZG87}\)

ZG88

\({X}_{a2,\,i}^{ZG88}=({x}_{a2,\,i}^{ZG88},{x}_{(a2,\,i-1)}^{ZG88}),i=2,3,\cdots ,113\)

\({x}_{a2,\,(i+1)}^{ZG88}\)

\({X}_{d1,\,i}^{ZG88}=({x}_{d1,\,i}^{ZG88},\,{x}_{d1,\,(i-1)}^{ZG88},\,{x}_{d1,\,(i-2)}^{ZG88},\,{x}_{d1,\,(i-3)}^{ZG88},\,{x}_{d1,\,(i-4)}^{ZG88}),i=5,6,\cdots 113\)

\({x}_{d1,\,(i+1)}^{ZG88}\)

\({X}_{d2,\,i}^{ZG88}=({x}_{d2,\,i}^{ZG88},\,{x}_{d2,\,(i-1)}^{ZG88},\,{x}_{d2,\,(i-2)}^{ZG88}),i=3,4,\cdots ,113\)

\({x}_{d2,\,(i+1)}^{ZG88}\)

G3

\({X}_{a2,\,i}^{G3}=({x}_{a2,\,i}^{G3},{x}_{(a2,\,i-1)}^{G3}),i=2,3,\cdots ,56\)

\({x}_{a2,\,(i+1)}^{G3}\)

\({X}_{d1,\,i}^{G3}=({x}_{d1,\,i}^{G3},\,{x}_{d1,\,(i-1)}^{G3},\,{x}_{d1,\,(i-2)}^{G3}),i=3,4,\cdots ,56\)

\({x}_{d1,\,(i+1)}^{G3}\)

\({X}_{d2,\,i}^{G3}=({x}_{d2,\,i}^{G3},\,{x}_{d2,\,(i-1)}^{G3}),i=2,3,\cdots ,56\)

\({x}_{d2,\,(i+1)}^{G3}\)

T1

\({X}_{a2,\,i}^{T1}=({x}_{a2,\,i}^{T1},{x}_{(a2,\,i-1)}^{T1}),i=2,3,\cdots ,88\)

\({x}_{a2,\,(i+1)}^{T1}\)

\({X}_{d1,\,i}^{T1}=({x}_{d1,\,i}^{T1},\,{x}_{d1,\,(i-1)}^{T1},\,{x}_{d1,\,(i-2)}^{T1}),i=3,5,\cdots ,88\)

\({x}_{d1,\,(i+1)}^{T1}\)

\({X}_{d2,\,i}^{T1}=({x}_{d2,\,i}^{T1},\,{x}_{d2,\,(i-1)}^{T1},\,{x}_{d2,\,(i-2)}^{T1},\,{x}_{d2,\,(i-3)}^{T1}),i=4,5,\cdots ,88\)

\({x}_{d2,\,(i+1)}^{T1}\)