Table 1 Classification results for all the input modalities and network structures.

From: Comparison of different input modalities and network structures for deep learning-based seizure detection

Input forms

Network structures

Accuracy

Sensitivity

Specificity

F1 score

AUC

FDR

Raw time-series EEG

FCNN

0.985

0.963

0.985

0.031

0.983

0.020

RNN

0.993

0.966

0.993

0.066

0.989

0.018

1D CNN

0.996

0.965

0.996

0.118

0.990

0.015

Periodogram

FCNN

0.985

0.963

0.985

0.046

0.984

0.020

RNN

0.982

0.967

0.982

0.026

0.985

0.024

1D CNN

0.996

0.962

0.996

0.108

0.989

0.016

Image of STFT

2D CNN

0.998

0.967

0.998

0.194

0.991

0.011

40 × 250 image of EEG

2D CNN

0.999

0.966

0.999

0.407

0.993

0.009

40 × 750 image of EEG

2D CNN

0.999

0.969

0.999

0.492

0.998

0.008

O’shea et al.26

1D CNN

0.997

0.959

0.997

0.136

0.990

0.012

Zhou et al.25

1D CNN

0.995

0.957

0.995

0.089

0.989

0.017

Cao et al.29

2D CNN

0.997

0.962

0.997

0.136

0.990

0.015

  1. AUC: area under the curve, CNN: convolutional neural network, EEG: electroencephalogram, FCNN: fully connected neural network, FDR: false detection rate (n/h), RNN: recurrent neural network, STFT: short-time Fourier transform.