Table 2 BCS weak-coupling limit values for 2Δ(0)/kBTc and ΔC/C for s−, d−, p−, and d + id-wave superconducting gap symmetries28,59.

From: Classifying superconductivity in Moiré graphene superlattices

Pairing symmetry and experiment geometry

\(\frac{{\bf{2}}\cdot {\boldsymbol{\Delta }}({\bf{0}})}{{{\boldsymbol{k}}}_{{\boldsymbol{B}}}\cdot {{\boldsymbol{T}}}_{{\boldsymbol{c}}}}\) or \(\frac{{\bf{2}}\cdot {{\boldsymbol{\Delta }}}_{{\boldsymbol{m}}}({\bf{0}})}{{{\boldsymbol{k}}}_{{\boldsymbol{B}}}\cdot {{\boldsymbol{T}}}_{{\boldsymbol{c}}}}\)

\(\frac{{\boldsymbol{\Delta }}{\boldsymbol{C}}}{{\boldsymbol{C}}}\)

s-wave

3.53

1.43

d-wave

4.28

0.995

p-wave; polar Al

4.924

0.792

p-wave; polar A||l

4.924

0.792

p-wave; axial Al

4.058

1.188

p-wave; axial A||l

4.058

1.188

d + id

3.85

depends on the ratio of two gap amplitudes;

\(0.995\le \frac{\Delta C}{C}\le 1.43\)

  1. Δm(0) is the maximum amplitude of the k-dependent d-wave gap, \(\Delta (\theta )={\Delta }_{m}(0)\cdot \,\cos (2\theta )\).