Figure 4
From: A minimal model for microbial biodiversity can reproduce experimentally observed ecological patterns

Incorporating metabolic and taxonomic structure. (a) Three-tiered secretion model used for simulating human and marine microbiomes. M = 300 resource types are grouped into T = 6 classes of equal size, labeled A through F. These groups represent different kinds of metabolites, e.g. lipids, sugars, amino acids, etc. Group F is the “waste” class, containing common byproducts generated by many metabolic pathways, e.g., carboxylic acids. A fraction fs of the byproduct flux from metabolism of a given resource is partitioned among resources of the same class. A fraction fw of the flux is partitioned among “waste” resources (class F). The rest of the flux is nonspecifically partitioned among all the other classes. In all simulations shown here, fs = fw = 0.45. (b) Heatmap of a metabolic matrix Dαβ encoding the three-tiered secretion model. (c) Taxonomic structure used for human and marine microbiome simulations. Microbial species are grouped into “families,” with each family specializing in a different resource class. Specialist families allocate a fraction q of their consumption capacity to their favored resource class. In all the simulations shown here, q = 0.9. There is also a generalist family whose preferences are uniformly sampled across all resource types.