Table 1 Generation performance on five publicly available datasets evaluated by MAE, PSNR, MI, and SSIM. The bold entries in this table indicate the algorithm which gets the best performance in each task. The standard for choosing the best algorithm is to have statistical significance over the other algorithms (p-value < 0.05). If an algorithm gets the best evaluation metrics but has no statistical significance over the others (p-value > 0.05), all of them will be regarded as the best algorithms. The result show that our IMT approach outperforms both Random Forest (RF) based method5 and Context-Aware GAN (CA-GAN)30 method on most datasets.
Datasets | Transitions | RF | CA-GAN | IMT | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cGAN + L1 | cGAN | L1 | |||||||||||||||||||
MAE ↓ | PSNR ↑ | MI ↑ | SSIM ↑ | MAE ↓ | PSNR ↑ | MI ↑ | SSIM ↑ | MAE ↓ | PSNR ↑ | MI ↑ | SSIM ↑ | MAE ↓ | PSNR ↑ | MI ↑ | SSIM ↑ | MAE ↓ | PSNR ↑ | MI ↑ | SSIM ↑ | ||
BraTs2015 | T1 → T2 | 6.025 | 24.717 | 0.617 | 0.910 | 11.947 | 19.738 | 0.787 | 0.826 | 8.292 | 22.560 | 0.862 | 0.866 | 10.692 | 20.301 | 0.788 | 0.575 | 8.654 | 22.517 | 0.901 | 0.880 |
T2 → T1 | 7.921 | 23.385 | 0.589 | 0.893 | 16.587 | 17.462 | 0.661 | 0.723 | 9.937 | 22.518 | 0.777 | 0.854 | 15.430 | 18.507 | 0.673 | 0.723 | 10.457 | 22.374 | 0.818 | 0.896 | |
T1 → T2-Flair | 8.176 | 23.222 | 0.609 | 0.873 | 13.999 | 19.157 | 0.722 | 0.756 | 7.934 | 22.687 | 0.833 | 0.837 | 11.671 | 19.969 | 0.749 | 0.797 | 8.462 | 22.642 | 0.879 | 0.857 | |
T2 → T2-Flair | 7.318 | 23.138 | 0.610 | 0.875 | 12.658 | 18.848 | 0.756 | 0.749 | 8.858 | 21.664 | 0.848 | 0.836 | 10.469 | 20.656 | 0.817 | 0.823 | 8.950 | 21.791 | 0.928 | 0.860 | |
Iseg2017 | T1 → T2 | 3.955 | 28.028 | 0.803 | 0.902 | 12.175 | 21.992 | 0.804 | 0.690 | 3.309 | 29.979 | 0.931 | 0.887 | 8.028 | 22.860 | 0.782 | 0.748 | 3.860 | 28.874 | 0.993 | 0.913 |
T2 → T1 | 11.466 | 22.342 | 0.788 | 0.808 | 17.151 | 18.401 | 0.789 | 0.662 | 9.586 | 23.610 | 0.868 | 0.745 | 17.311 | 18.121 | 0.777 | 0.620 | 10.591 | 23.325 | 0.880 | 0.754 | |
MRBrain13 | T1 → T2-Flair | 7.609 | 24.780 | 1.123 | 0.863 | 13.643 | 19.503 | 0.805 | 0.782 | 6.064 | 26.495 | 1.066 | 0.823 | 9.906 | 22.616 | 1.009 | 0.785 | 6.505 | 26.299 | 1.185 | 0.881 |
ADNI | PD → T2 | 9.485 | 24.006 | 1.452 | 0.819 | 16.575 | 19.008 | 0.674 | 0.728 | 6.757 | 26.477 | 1.266 | 0.812 | 7.211 | 26.330 | 1.184 | 0.779 | 4.898 | 29.089 | 1.484 | 0.891 |
T2 → PD | 5.856 | 29.118 | 1.515 | 0.880 | 17.648 | 18.715 | 0.659 | 0.713 | 4.590 | 31.014 | 1.381 | 0.856 | 5.336 | 29.032 | 1.282 | 0.820 | 5.055 | 30.614 | 1.536 | 0.881 | |
RIRE | T1 → T2 | 38.047 | 12.862 | 0.694 | 0.501 | 18.625 | 18.248 | 0.724 | 0.749 | 5.250 | 28.994 | 0.636 | 0.736 | 13.690 | 21.038 | 0.513 | 0.506 | 9.105 | 28.951 | 0.698 | 0.760 |
T2 → T1 | 17.022 | 19.811 | 0.944 | 0.622 | 23.374 | 16.029 | 0.650 | 0.728 | 9.035 | 24.043 | 0.916 | 0.692 | 13.964 | 20.450 | 0.737 | 0.538 | 9.105 | 24.003 | 0.969 | 0.741 | |