Table 4 \(J=1\) rovibrational energy levels of H\({}_{2}\)16O in Radau bisector embedding with different generalized centrifugal sudden approximations (GCSA) referring to each of the three choices of \({\hat{c}}\) axis along which \(K\) is projected. The results are provided in cm\({}^{-1}\) and given relative to the vibrational parent state. Vibrational [vib, \(({v}_{1}\ {v}_{2}\ {v}_{3})\)] and rotational (rot, \({J}_{{K}_{a}{K}_{c}}\)) quantum numbers are assigned for each state. The differences of the eigenvalues compared to the diagonal \({{\bf{G}}}_{{\rm{R}}}\) approximation (DGRA) [\(\Delta \)(GCSA)] are also provided.

From: On neglecting Coriolis and related couplings in first-principles rovibrational spectroscopy: considerations of symmetry, accuracy, and simplicity

\({ {\hat{H}} }_{{\rm{V}}{\rm{R}}}\)

DGRA

GCSA

\(\Delta \)(GCSA)

#

level

vib

rot

ref.

CS\({}_{{\bf{x}}}\)

CS\({}_{{\bf{z}}}\)

CS\({}_{{\bf{y}}}\)

CS\({}_{{\bf{x}}}\)

CS\({}_{{\bf{z}}}\)

CS\({}_{{\bf{y}}}\)

1

23.8

(0 0 0)

\({1}_{01}\)

23.8

23.8

30.5

33.1

0.0

6.7

9.3

2

37.1

(0 0 0)

\({1}_{11}\)

37.2

39.8

30.5

37.2

2.6

\(-6.7\)

0.0

3

42.4

(0 0 0)

\({1}_{10}\)

42.4

39.8

42.4

33.1

\(-2.6\)

0.0

\(-9.3\)

4

23.8

(0 1 0)

\({1}_{01}\)

23.9

23.9

32.3

34.9

0.0

8.3

10.9

5

40.2

(0 1 0)

\({1}_{11}\)

40.3

43.1

32.3

40.3

2.7

\(-8.1\)

0.0

6

45.8

(0 1 0)

\({1}_{10}\)

45.8

43.1

45.8

34.9

\(-2.7\)

0.0

\(-10.9\)

7

23.8

(0 2 0)

\({1}_{01}\)

24.0

24.0

34.6

37.2

0.0

10.6

13.2

8

44.5

(0 2 0)

\({1}_{11}\)

44.7

47.5

34.6

44.7

2.8

\(-10.1\)

0.0

9

50.3

(0 2 0)

\({1}_{10}\)

50.3

47.5

50.3

37.2

\(-2.8\)

0.0

\(-13.1\)

10

23.4

(1 0 0)

\({1}_{01}\)

23.4

23.4

29.8

32.4

0.0

6.4

9.0

11

36.2

(1 0 0)

\({1}_{11}\)

36.3

38.9

29.8

36.3

2.6

\(-6.4\)

0.0

12

41.4

(1 0 0)

\({1}_{10}\)

41.4

38.9

41.4

32.4

\(-2.6\)

0.0

\(-9.0\)

13

23.6

(0 0 1)

\({1}_{01}\)

23.6

23.6

29.5

32.3

0.0

6.0

8.8

14

35.8

(0 0 1)

\({1}_{11}\)

35.8

38.4

29.5

35.8

2.6

\(-6.2\)

0.0

15

41.1

(0 0 1)

\({1}_{10}\)

41.1

38.4

41.1

32.3

\(-2.6\)

0.0

\(-8.7\)

16

23.8

(0 3 0)

\({1}_{01}\)

24.1

24.1

38.0

40.5

0.0

13.9

16.4

17

50.7

(0 3 0)

\({1}_{11}\)

51.0

53.9

38.0

51.0

2.9

\(-13.0\)

0.0

18

56.8

(0 3 0)

\({1}_{10}\)

56.8

53.9

56.8

40.5

\(-2.9\)

0.0

\(-16.3\)

19

23.4

(1 1 0)

\({1}_{01}\)

23.6

23.6

31.5

34.1

0.0

8.0

10.6

20

39.2

(1 1 0)

\({1}_{11}\)

39.3

42.0

31.5

39.3

2.7

\(-7.8\)

0.0

21

44.7

(1 1 0)

\({1}_{10}\)

44.7

42.0

44.7

34.1

\(-2.7\)

0.0

\(-10.6\)

22

23.6

(0 1 1)

\({1}_{01}\)

23.7

23.7

31.1

33.9

0.0

7.4

10.2

23

38.5

(0 1 1)

\({1}_{11}\)

38.6

41.3

31.1

38.6

2.8

\(-7.5\)

0.0

24

44.1

(0 1 1)

\({1}_{10}\)

44.1

41.3

44.1

33.9

\(-2.8\)

0.0

\(-10.2\)

25

23.7

(0 4 0)

\({1}_{01}\)

24.1

24.1

43.3

45.8

0.0

19.2

21.7

26

60.8

(0 4 0)

\({1}_{11}\)

61.2

64.1

43.3

61.2

3.0

\(-17.8\)

0.0

27

67.1

(0 4 0)

\({1}_{10}\)

67.1

64.1

67.1

45.8

\(-3.0\)

0.0

\(-21.3\)

28

23.4

(1 2 0)

\({1}_{01}\)

23.6

23.6

33.8

36.4

0.0

10.1

12.7

29

43.2

(1 2 0)

\({1}_{11}\)

43.4

46.2

33.8

43.4

2.8

\(-9.7\)

0.0

30

49.0

(1 2 0)

\({1}_{10}\)

49.0

46.2

49.0

36.4

\(-2.8\)

0.0

\(-12.7\)

31

23.6

(0 2 1)

\({1}_{01}\)

23.8

23.8

33.2

35.9

0.0

9.4

12.2

32

42.2

(0 2 1)

\({1}_{11}\)

42.3

45.2

33.2

42.3

2.9

\(-9.2\)

0.0

33

48.1

(0 2 1)

\({1}_{10}\)

48.1

45.2

48.1

35.9

\(-2.9\)

0.0

\(-12.1\)

34

23.0

(2 0 0)

\({1}_{01}\)

23.1

23.1

29.1

31.8

0.0

6.1

8.7

35

35.3

(2 0 0)

\({1}_{11}\)

35.3

37.9

29.1

35.3

2.6

\(-6.2\)

0.0

36

40.5

(2 0 0)

\({1}_{10}\)

40.5

37.9

40.5

31.8

\(-2.6\)

0.0

\(-8.7\)

37

23.2

(1 0 1)

\({1}_{01}\)

23.2

23.2

28.9

31.7

0.0

5.7

8.5

38

34.9

(1 0 1)

\({1}_{11}\)

34.9

37.5

28.9

34.9

2.6

\(-6.0\)

0.0

39

40.2

(1 0 1)

\({1}_{10}\)

40.2

37.5

40.2

31.7

\(-2.6\)

0.0

\(-8.5\)

40

23.3

(0 0 2)

\({1}_{01}\)

23.2

23.2

28.7

31.6

0.0

5.4

8.3

41

34.6

(0 0 2)

\({1}_{11}\)

34.5

37.2

28.7

34.5

2.7

\(-5.9\)

0.0

42

39.9

(0 0 2)

\({1}_{10}\)

39.9

37.2

39.9

31.6

\(-2.7\)

0.0

\(-8.3\)