Table 6 Model performance indicators when applying variable selection with the threshold of 0.05.

From: Artificial Intelligence based Models for Screening of Hematologic Malignancies using Cell Population Data

 

AUC ± Standard Deviation

Accuracy

Precision

Recall

Stochastic Gradient Descent (SGD)

0.823 ± 0.040

0.699

0.746

0.710

Support Vector Machine (SVM)

0.792 ± 0.035

0.716

0.719

0.744

Decision Tree (DT)

0.782 ± 0.039

0.728

0.745

0.722

Ramdom Forest (RF)

0.859 ± 0.027

0.778

0.803

0.764

Linear Regression (LINEAR), adapted

0.802 ± 0.019

0.721

0.726

0.742

Logistic Regression (LOGIT)

0.822 ± 0.034

0.725

0.741

0.724

Artificial Neural Network (ANN)

0.935 ± 0.026

0.828

0.828

0.849