Table 1 Performance of models for predicting stillbirth using different classification algorithms and 10-fold cross validation.

From: Stillbirth risk prediction using machine learning for a large cohort of births from Western Australia, 1980–2015

Classifiers

Model

AUC

5% FPR

10% FPR

+LR

−LR

Sensitivity

PPV

NPV

CorrectlyClassified

+LR

−LR

Sensitivity

PPV

NPV

Correctly Classified

Logistic Regression

A

0.830

8.10

0.63

40.5

4.72

99.62

94.67

5.52

0.50

55.2

3.26

99.7

89.79

 

B

0.834

8.07

0.63

40.5

4.32

99.65

94.68

5.57

0.49

55.7

3.02

99.73

89.80

 

C

0.811

7.59

0.66

37.8

3.89

99.65

94.72

5.14

0.54

51.6

2.67

99.71

89.75

 

D

0.602

2.25

0.93

11.2

1.35

99.43

94.49

1.90

0.90

19.0

1.15

99.45

89.57

 

E

0.633

3.29

0.88

16.5

1.80

99.51

94.54

2.44

0.84

24.4

1.35

99.53

89.64

 

F

0.799

6.02

0.74

30.1

3.26

99.59

94.64

4.65

0.60

46.4

2.53

99.67

89.76

Decision Tree

A

0.819

8.16

0.62

40.7

4.75

99.62

94.67

5.68

0.51

54.1

3.35

99.69

90.24

 

B

0.808

8.18

0.63

40.6

4.38

99.65

94.73

5.01

0.51

54.7

2.73

99.72

88.88

 

C

0.776

6.98

0.68

35.8

3.59

99.64

94.58

5.19

0.63

42.3

2.69

99.67

91.40

 

D

0.589

2.07

0.95

10.2

1.25

99.43

94.54

1.78

0.91

17.7

1.08

99.45

89.60

 

E

0.599

3.16

0.89

15.2

1.73

99.50

94.68

2.33

0.86

23.0

1.29

99.52

89.67

 

F

0.779

5.94

0.74

30.1

3.22

99.59

94.58

5.71

0.73

31.2

3.09

99.59

94.13

Random Forest

A

0.831

8.12

0.63

40.6

4.73

99.62

94.67

5.55

0.50

55.5

3.28

99.70

89.79

 

B

0.836

8.22

0.62

41.1

4.40

99.65

94.71

5.66

0.48

56.4

3.07

99.73

89.85

 

C

0.788

7.29

0.67

36.4

3.74

99.64

94.69

4.91

0.57

49.1

2.55

99.70

89.78

 

D

0.594

2.09

0.94

10.4

1.26

99.43

94.48

1.75

0.92

17.5

1.06

99.44

89.57

 

E

0.633

2.87

0.90

14.4

1.58

99.50

94.54

2.37

0.85

23.7

1.31

99.53

89.64

 

F

0.801

5.96

0.74

29.8

3.23

99.59

94.64

4.66

0.59

46.7

2.54

99.67

89.76

XGBoost

A

0.840

8.93

0.58

44.6

5.18

99.65

94.70

5.81

0.47

58.1

3.43

99.72

89.81

 

B

0.842

9.03

0.58

45.3

4.81

99.68

94.71

5.86

0.46

58.7

3.18

99.74

89.82

 

C

0.804

7.54

0.66

37.6

3.86

99.65

94.69

5.12

0.54

51.2

2.66

99.71

89.81

 

D

0.596

2.18

0.94

10.9

1.32

99.43

94.49

1.85

0.91

18.5

1.12

99.45

89.57

 

E

0.628

3.31

0.88

16.6

1.82

99.51

94.55

2.47

0.84

24.7

1.36

99.53

89.64

 

F

0.805

6.56

0.71

32.8

3.54

99.61

94.66

4.84

0.57

48.4

2.64

99.68

89.76

Multi-layer Perceptron

A

0.836

8.57

0.60

42.8

4.98

99.63

94.69

5.65

0.48

56.5

3.34

99.71

89.80

 

B

0.840

8.69

0.60

43.5

4.64

99.67

94.71

5.73

0.48

57.2

3.11

99.73

89.83

 

C

0.801

7.38

0.67

36.7

3.78

99.65

94.72

5.12

0.55

50.9

2.65

99.71

89.84

 

D

0.595

2.15

0.94

10.8

1.30

99.43

94.49

1.84

0.91

18.4

1.11

99.45

89.56

 

E

0.634

3.24

0.88

16.2

1.78

99.51

94.57

2.41

0.84

24.1

1.33

99.53

89.64

 

F

0.802

6.43

0.71

32.1

3.47

99.60

94.65

4.81

0.58

48.1

2.62

99.68

89.77

  1. Estimates with 95% confidence intervals are provided in the Supplementary Material, Supplementary Table 6.
  2. Model A – Socio-demographics, chronic conditions, current pregnancy complications and characteristics.
  3. Model B – Predictors from Model A, plus previous pregnancy history.
  4. Model C – Predictors from Model A, plus grandmother’s pregnancy history, parental birth outcomes.
  5. Model D – Predictors known at the booking appointment.
  6. Model E – Predictors from Model D, plus previous pregnancy history.
  7. Model F – Predictors from Model E, plus current pregnancy complications and characteristics.
  8. Abbreviations: AUC – Area under the receiving-operator characteristic curve; +LR – Positive likelihood ratio; -LR – Negative likelihood ratio; FPR – alpha (type I error) = 1-specificity; Sensitivity – detection rate, TPR; TP – True Positives; FP – False Positives; TN – True Negatives; FN – False Negatives; PPV – Positive predictive value = TP/(TP + FP); NPV - Negative predictive value = TN/(FN + TN); CI – Confidence Interval.