Table 1 Performance of models for predicting stillbirth using different classification algorithms and 10-fold cross validation.
Classifiers | Model | AUC | 5% FPR | 10% FPR | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+LR | −LR | Sensitivity | PPV | NPV | CorrectlyClassified | +LR | −LR | Sensitivity | PPV | NPV | Correctly Classified | |||
Logistic Regression | A | 0.830 | 8.10 | 0.63 | 40.5 | 4.72 | 99.62 | 94.67 | 5.52 | 0.50 | 55.2 | 3.26 | 99.7 | 89.79 |
B | 0.834 | 8.07 | 0.63 | 40.5 | 4.32 | 99.65 | 94.68 | 5.57 | 0.49 | 55.7 | 3.02 | 99.73 | 89.80 | |
C | 0.811 | 7.59 | 0.66 | 37.8 | 3.89 | 99.65 | 94.72 | 5.14 | 0.54 | 51.6 | 2.67 | 99.71 | 89.75 | |
D | 0.602 | 2.25 | 0.93 | 11.2 | 1.35 | 99.43 | 94.49 | 1.90 | 0.90 | 19.0 | 1.15 | 99.45 | 89.57 | |
E | 0.633 | 3.29 | 0.88 | 16.5 | 1.80 | 99.51 | 94.54 | 2.44 | 0.84 | 24.4 | 1.35 | 99.53 | 89.64 | |
F | 0.799 | 6.02 | 0.74 | 30.1 | 3.26 | 99.59 | 94.64 | 4.65 | 0.60 | 46.4 | 2.53 | 99.67 | 89.76 | |
Decision Tree | A | 0.819 | 8.16 | 0.62 | 40.7 | 4.75 | 99.62 | 94.67 | 5.68 | 0.51 | 54.1 | 3.35 | 99.69 | 90.24 |
B | 0.808 | 8.18 | 0.63 | 40.6 | 4.38 | 99.65 | 94.73 | 5.01 | 0.51 | 54.7 | 2.73 | 99.72 | 88.88 | |
C | 0.776 | 6.98 | 0.68 | 35.8 | 3.59 | 99.64 | 94.58 | 5.19 | 0.63 | 42.3 | 2.69 | 99.67 | 91.40 | |
D | 0.589 | 2.07 | 0.95 | 10.2 | 1.25 | 99.43 | 94.54 | 1.78 | 0.91 | 17.7 | 1.08 | 99.45 | 89.60 | |
E | 0.599 | 3.16 | 0.89 | 15.2 | 1.73 | 99.50 | 94.68 | 2.33 | 0.86 | 23.0 | 1.29 | 99.52 | 89.67 | |
F | 0.779 | 5.94 | 0.74 | 30.1 | 3.22 | 99.59 | 94.58 | 5.71 | 0.73 | 31.2 | 3.09 | 99.59 | 94.13 | |
Random Forest | A | 0.831 | 8.12 | 0.63 | 40.6 | 4.73 | 99.62 | 94.67 | 5.55 | 0.50 | 55.5 | 3.28 | 99.70 | 89.79 |
B | 0.836 | 8.22 | 0.62 | 41.1 | 4.40 | 99.65 | 94.71 | 5.66 | 0.48 | 56.4 | 3.07 | 99.73 | 89.85 | |
C | 0.788 | 7.29 | 0.67 | 36.4 | 3.74 | 99.64 | 94.69 | 4.91 | 0.57 | 49.1 | 2.55 | 99.70 | 89.78 | |
D | 0.594 | 2.09 | 0.94 | 10.4 | 1.26 | 99.43 | 94.48 | 1.75 | 0.92 | 17.5 | 1.06 | 99.44 | 89.57 | |
E | 0.633 | 2.87 | 0.90 | 14.4 | 1.58 | 99.50 | 94.54 | 2.37 | 0.85 | 23.7 | 1.31 | 99.53 | 89.64 | |
F | 0.801 | 5.96 | 0.74 | 29.8 | 3.23 | 99.59 | 94.64 | 4.66 | 0.59 | 46.7 | 2.54 | 99.67 | 89.76 | |
XGBoost | A | 0.840 | 8.93 | 0.58 | 44.6 | 5.18 | 99.65 | 94.70 | 5.81 | 0.47 | 58.1 | 3.43 | 99.72 | 89.81 |
B | 0.842 | 9.03 | 0.58 | 45.3 | 4.81 | 99.68 | 94.71 | 5.86 | 0.46 | 58.7 | 3.18 | 99.74 | 89.82 | |
C | 0.804 | 7.54 | 0.66 | 37.6 | 3.86 | 99.65 | 94.69 | 5.12 | 0.54 | 51.2 | 2.66 | 99.71 | 89.81 | |
D | 0.596 | 2.18 | 0.94 | 10.9 | 1.32 | 99.43 | 94.49 | 1.85 | 0.91 | 18.5 | 1.12 | 99.45 | 89.57 | |
E | 0.628 | 3.31 | 0.88 | 16.6 | 1.82 | 99.51 | 94.55 | 2.47 | 0.84 | 24.7 | 1.36 | 99.53 | 89.64 | |
F | 0.805 | 6.56 | 0.71 | 32.8 | 3.54 | 99.61 | 94.66 | 4.84 | 0.57 | 48.4 | 2.64 | 99.68 | 89.76 | |
Multi-layer Perceptron | A | 0.836 | 8.57 | 0.60 | 42.8 | 4.98 | 99.63 | 94.69 | 5.65 | 0.48 | 56.5 | 3.34 | 99.71 | 89.80 |
B | 0.840 | 8.69 | 0.60 | 43.5 | 4.64 | 99.67 | 94.71 | 5.73 | 0.48 | 57.2 | 3.11 | 99.73 | 89.83 | |
C | 0.801 | 7.38 | 0.67 | 36.7 | 3.78 | 99.65 | 94.72 | 5.12 | 0.55 | 50.9 | 2.65 | 99.71 | 89.84 | |
D | 0.595 | 2.15 | 0.94 | 10.8 | 1.30 | 99.43 | 94.49 | 1.84 | 0.91 | 18.4 | 1.11 | 99.45 | 89.56 | |
E | 0.634 | 3.24 | 0.88 | 16.2 | 1.78 | 99.51 | 94.57 | 2.41 | 0.84 | 24.1 | 1.33 | 99.53 | 89.64 | |
F | 0.802 | 6.43 | 0.71 | 32.1 | 3.47 | 99.60 | 94.65 | 4.81 | 0.58 | 48.1 | 2.62 | 99.68 | 89.77 | |