Table 3 Detailed results of machine learning classifiers for prediction of mortality and post-surgery prolonged LOS.

From: Deep Learning for Improved Risk Prediction in Surgical Outcomes

Model

Precision

Recall

F-Score

Accuracy

AUROC

Mortality Prediction

Deep Neural Network

0.94 ± 0.03

0.86 ± 0.04

0.89 ± 0.03

0.89 ± 0.04

0.95 ± 0.02

Gradient Boosting

0.87 ± 0.03

0.78 ± 0.04

0.83 ± 0.04

0.84 ± 0.04

0.90 ± 0.04

Random Forest

0.71 ± 0.04

0.27 ± 0.03

0.43 ± 0.03

0.75 ± 0.05

0.84 ± 0.03

Decision Tree

0.43 ± 0.04

0.14 ± 0.05

0.29 ± 0.06

0.65 ± 0.04

0.58 ± 0.04

Ridge Regression

0.43 ± 0.04

0.10 ± 0.04

0.28 ± 0.03

0.61 ± 0.04

0.55 ± 0.03

Prolonged LOS Prediction

Deep Neural Network

0.85 ± 0.04

0.91 ± 0.04

0.89 ± 0.04

0.85 ± 0.03

0.94 ± 0.04

Gradient Boosting

0.87 ± 0.04

0.82 ± 0.05

0.83 ± 0.03

0.82 ± 0.03

0.88 ± 0.03

Random Forest

0.62 ± 0.03

0.51 ± 0.05

0.55 ± 0.04

0.61 ± 0.03

0.67 ± 0.03

Decision Tree

0.56 ± 0.04

0.49 ± 0.04

0.52 ± 0.05

0.53 ± 0.04

0.59 ± 0.05

Ridge Regression

0.59 ± 0.05

0.32 ± 0.04

0.35 ± 0.04

0.63 ± 0.06

0.54 ± 0.07