Figure 1
From: Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption

Four synthesis techniques are employed to produce graphene quantum dot (GQD) substrates of varying oxidation level. (a) Schematic illustration of synthesis techniques to produce no-oxidation GQDs (no-ox-GQDs), low-oxidation GQDs (low-ox-GQDs), medium-oxidation GQDs (med-ox-GQDs), and high-oxidation GQDs (high-ox-GQDs). (b) Normalized X-ray photoelectron spectroscopy (XPS) data of no-, low-, med-, and high-ox-GQDs. Arrows indicate the center of the C1s carbon-carbon (C-C) bond at 284.5 eV and increasing oxidation via contributions of various carbon-oxygen bonds (see Fig. S1 for deconvolutions and peak ratios). (c) Normalized absorbance (dashed) and fluorescence emission (solid) spectra of no-ox-GQDs in hexane solution and low-, med-, and high-ox-GQDs in water. All GQDs were excited at 320 nm.