Table 8 Mean and standard error of prediction accuracy and prediction error for various methods using dataset 5.
Methods | Accuracy | MSE | Accuracy SE | MSE SE | Percentage(%) gain in Accuracy | Percentage(%) reduction in MSE |
|---|---|---|---|---|---|---|
LASSO* | 0.38 | 0.37 | 0.10 | 0.06 | NA | NA |
Df-Model | 0.44 | 0.33 | 0.09 | 0.06 | 13.6 | 10.8 |
Df-Regpath | 0.42 | 0.35 | 0.09 | 0.08 | 9.1 | 5.4 |
Df-Cvpath | 0.40 | 0.35 | 0.09 | 0.07 | 4.5 | 5.4 |
Df-Lambda | 0.44 | 0.33 | 0.09 | 0.08 | 13.6 | 10.8 |
Inverse Chi | 0.54 | 0.22 | 0.08 | 0.03 | 36.4 | 40.5 |
Logit | 0.54 | 0.22 | 0.08 | 0.03 | 36.4 | 40.5 |
Meanp | 0.52 | 0.25 | 0.08 | 0.03 | 31.8 | 32.4 |
Sumz | 0.54 | 0.22 | 0.08 | 0.03 | 36.4 | 40.5 |
Regression with t-error | 0.34 | 0.38 | 0.10 | 0.06 | 0 | 0 |
RR | 0.53 | 0.22 | 0.08 | 0.10 | 39.5 | 40.5 |
GBLUP | 0.57 | 0.35 | 0.09 | 0.10 | 50 | 5.4 |
Bayesian LASSO | 0.55 | 0.30 | 0.10 | 0.10 | 44.73 | 18.9 |