Table 3 Results for liver segmentation: Total Dice score (mean ± stdv.) for the different architectures and input dimensionalities (2D and 3D). We validated each approach with the multidimensional image augmentation (MIA) for Tensorflow and with our CT-specific image augmentation (CTIA).

From: Domain-specific cues improve robustness of deep learning-based segmentation of CT volumes

  

Total

nnU-Net + MIA

2D

\(\; 0.974 \pm 0.031 \)

nnU-Net + CTIA

2D

\(\; 0.978 \pm 0.001 \)

nnU-Net + MIA

3D

\(\; 0.941 \pm 0.027 \)

nnU-Net + CTIA

3D

\(\; 0.944 \pm 0.014 \)

MS-D Net + MIA

2D

\(\; 0.961 \pm 0.032 \)

MS-D Net + CTIA

2D

\(\; 0.964 \pm 0.002 \)

MS-D Net + MIA

3D

\(\; 0.942 \pm 0.037 \)

MS-D Net + CTIA

3D

\(\; 0.942 \pm 0.004 \)

Stacked CNN + MIA

 

\(\; 0.976 \pm 0.021 \)

Stacked CNN + CTIA

 

\(\; 0.980 \pm 0.001 \)