Table 3 Model comparisons based on the five machine leaning techniques.
Feature set | Machine learning algorithm | Validation method | N folds | Training set size | Testing set size | Training accuracy | Testing accuracy |
|---|---|---|---|---|---|---|---|
1 | DT | Holdout sampling | 1,140 | 286 | 0.668 | 0.703 | |
DT | Cross-validation | 5 | 912 | 286 | 0.625 | 0.692 | |
LR | Holdout sampling | 1,140 | 286 | 0.663 | 0.647 | ||
LR | Cross-validation | 5 | 912 | 286 | 0.657 | 0.632 | |
Bagging | Holdout sampling | 1,140 | 286 | 0.680 | 0.710 | ||
Bagging | Cross-validation | 5 | 912 | 286 | 0.655 | 0.706 | |
RF | Holdout sampling | 1,140 | 286 | 0.675 | 0.713 | ||
RF | Cross-validation | 5 | 912 | 286 | 0.675 | 0.692 | |
AdaBoost | Holdout sampling | 1,140 | 286 | 0.668 | 0.696 | ||
Real AdaBoost | Cross-validation | 5 | 912 | 286 | 0.642 | 0.713 | |
2 | DT | Holdout sampling | 1,140 | 286 | 0.780 | 0.762 | |
DT | Cross-validation | 5 | 912 | 286 | 0.758 | 0.745 | |
LR | Holdout sampling | 1,140 | 286 | 0.791 | 0.746 | ||
LR | Cross-validation | 5 | 912 | 286 | 0.814 | 0.825 | |
Bagging | Holdout sampling | 1,140 | 286 | 0.976 | 0.930 | ||
Bagging | Cross-validation | 5 | 912 | 286 | 0.794 | 0.776 | |
RF | Holdout sampling | 1,140 | 286 | 0.949 | 0.916 | ||
RF | Cross-validation | 5 | 912 | 286 | 0.918 | 0.941 | |
AdaBoost | Holdout sampling | 1,140 | 286 | 0.943 | 0.878 | ||
Real AdaBoost | Cross-validation | 5 | 912 | 286 | 0.932 | 0.948 |