Table 4 The number of seedlings classified correctly in each class and metrics for external classification using Ilastik descriptors of soybean seeds and seedlings according to their physiological quality.

From: Interactive machine learning for soybean seed and seedling quality classification

Method

Class

Training set

Cross-validation

Validation set

(n = 422)

(n = 178)

Hits (Total)

LDA

Vigorous seedlings

159 (162)

64 (69)

Weak seedlings

122 (131)

44 (55)

Non-germinated seeds

129 (129)

52 (54)

Overall accuracy

0.97

0.92 ± 0.04

0.90

Kappa

0.96

0.89 ± 0.06

0.85

Precision

0.97

0.92 ± 0.04

0.90

Sensitivity

0.97

0.93 ± 0.04

0.90

Specificity

0.99

0.96 ± 0.02

0.95

RF

Vigorous seedlings

160 (162)

67 (69)

Weak seedlings

120 (131)

49 (55)

Non-germinated seeds

128 (129)

52 (54)

Overall accuracy

0.97

0.93 ± 0.03

0.94

Kappa

0.95

0.89 ± 0.04

0.92

Precision

0.97

0.93 ± 0.03

0.94

Sensitivity

0.97

0.93 ± 0.03

0.94

Specificity

0.98

0.96 ± 0.02

0.97

SVM

Vigorous seedlings

158 (162)

60 (69)

Weak seedlings

110 (131)

42 (55)

Non-germinated seeds

127 (129)

48 (54)

Overall accuracy

0.94

0.89 ± 0.03

0.84

Kappa

0.90

0.83 ± 0.04

0.76

Precision

0.94

0.89 ± 0.02

0.84

Sensitivity

0.93

0.89 ± 0.03

0.84

Specificity

0.97

0.94 ± 0.02

0.92