Table 3 Strategy to practically simulate deterministic (random) outcome with efficiency a (b). Here, \(\phi _0 = |\alpha _0 -\alpha _1|/2\), \(\phi _1 = |\alpha _0 -\alpha _1^\perp |/2\), and ‘x’ represents no detection.

From: Bright-light detector control emulates the local bounds of Bell-type inequalities

Probability

Intensity

Polarization

Outcome when basis

Required value of I

Matches

Mismatches

\(a-b\)

I

\(\alpha _0\)

\(\alpha _0\)

x

\(I \ge I_{\text {th}}\), \(I \cos ^2(2\phi _0) < I_{\text {th}}\), \(I \sin ^2(2\phi _0) < I_{\text {th}}\)

b/2

I

\(\alpha _0 + \phi _0\)

\(\alpha _0\)

\(\alpha _1\)

\(I \sin ^2(\phi _0) < I_{\text {th}} \le I \cos ^2(\phi _0)\)

b/2

I

\(\alpha _0 - \phi _1\)

\(\alpha _0\)

\(\alpha _1^\perp\)

\(I \sin ^2(\phi _1) < I_{\text {th}} \le I \cos ^2(\phi _1)\)

\(1-a\)

Vacuum

 

x

x