Table 3 Strategy to practically simulate deterministic (random) outcome with efficiency a (b). Here, \(\phi _0 = |\alpha _0 -\alpha _1|/2\), \(\phi _1 = |\alpha _0 -\alpha _1^\perp |/2\), and ‘x’ represents no detection.
From: Bright-light detector control emulates the local bounds of Bell-type inequalities
Probability | Intensity | Polarization | Outcome when basis | Required value of I | |
|---|---|---|---|---|---|
Matches | Mismatches | ||||
\(a-b\) | I | \(\alpha _0\) | \(\alpha _0\) | x | \(I \ge I_{\text {th}}\), \(I \cos ^2(2\phi _0) < I_{\text {th}}\), \(I \sin ^2(2\phi _0) < I_{\text {th}}\) |
b/2 | I | \(\alpha _0 + \phi _0\) | \(\alpha _0\) | \(\alpha _1\) | \(I \sin ^2(\phi _0) < I_{\text {th}} \le I \cos ^2(\phi _0)\) |
b/2 | I | \(\alpha _0 - \phi _1\) | \(\alpha _0\) | \(\alpha _1^\perp\) | \(I \sin ^2(\phi _1) < I_{\text {th}} \le I \cos ^2(\phi _1)\) |
\(1-a\) | Vacuum | x | x | ||