Table 3 Analysis of variance (ANOVA) test for the five measures considered to study stability of the bottleneck case in relation with the experimental variables. As for the previously presented Table 2, statistical significance of each condition has been computed taking all trials belonging to a specific class of experiments. Again, values given in bold are statistically significant on the 5% level of confidence and indicate therefore a correlation between experimental condition and presented quantity.
ANOVA result | Competitiveness (student dataset) | Presence of obstacle (soldier dataset) | Obstacle position (soldier dataset) | |
|---|---|---|---|---|
Low competitiveness | High competitiveness | |||
Distance ratio | \(\mathbf{p } < \mathbf{0 }.\mathbf{001 }, \mathbf{F(2,31) } = \mathbf{19 }.\mathbf{57 }\) | p = 0.834, F(1,5) = 0.05 | p = 0.411, F(1,12) = 0.73 | p = 0.095, F(2,17) = 2.77 |
Side change ratio | \(\mathbf{p } = \mathbf{0 }.\mathbf{035 }, \mathbf{F(2,31) } = \mathbf{3 }.\mathbf{76 }\) | \(\mathbf{p } = \mathbf{0 }.\mathbf{033 }, \mathbf{F(1,5) } = \mathbf{10 }.\mathbf{18 }\) | p = 0.102, F(1,12) = 3.19 | \(\mathbf{p } = \mathbf{0 }.\mathbf{028 }, \mathbf{F(2,17) } = \mathbf{4 }.\mathbf{57 }\) |
Velocity fluctuation | \(\mathbf{p } < \mathbf{0 }.\mathbf{001 }, \mathbf{F(2,31) } = \mathbf{59 }.\mathbf{66 }\) | p = 0.466, F(1,5) = 0.65 | \(\mathbf{p } = \mathbf{0 }.\mathbf{010 }, \mathbf{F(1,12) } = \mathbf{9 }.\mathbf{71 }\) | p = 0.203, F(2,17) = 1.78 |
Alignment parameter fluctuation | \(\mathbf{p } < \mathbf{0 }.\mathbf{001 }, \mathbf{F(2,31) } = \mathbf{41 }.\mathbf{76 }\) | p = 0.351, F(1,5) = 1.11 | \(\mathbf{p } = \mathbf{0 }.\mathbf{006 }, \mathbf{F(1,12) } = \mathbf{11 }.\mathbf{43 }\) | \(\mathbf{p } = \mathbf{0 }.\mathbf{027 }, \mathbf{F(2,17) } = \mathbf{4 }.\mathbf{61 }\) |
Mean flow rate at the exit | p = 0.604, F(2,31) = 0.51 | p = 0.515, F(1,5) = 0.509 | \(\mathbf{p } = \mathbf{0 }.\mathbf{005 }, \mathbf{F(1,12) } = \mathbf{12 }.\mathbf{12 }\) | \(\mathbf{p } = \mathbf{0 }.\mathbf{036 }, \mathbf{F(2,17) } = \mathbf{4 }.\mathbf{18 }\) |