Table 4 Comparison between values of \(f^{\prime\prime}(0),g^{\prime\prime}(0),f(\infty ),\) and \(g(\infty )\) with Wang51 for numerical values for \(\lambda .\)

From: Significance of Hall effect and Ion slip in a three-dimensional bioconvective Tangent hyperbolic nanofluid flow subject to Arrhenius activation energy

\(\lambda\)

51

Present

51

Present

51

Present

51

Present

\(f^{\prime\prime}(0)\)

\(f^{\prime\prime}(0)\)

\(g^{\prime\prime}(0)\)

\(g^{\prime\prime}(0)\)

\(f(\infty )\)

\(f(\infty )\)

\(g(\infty )\)

\(g(\infty )\)

\(0\)

\(- 1\)

\(- 1\)

\(0\)

\(0\)

\(1\)

\(1\)

\(0\)

\(0\)

\(0.25\)

\(- 1.048813\)

\(- 1.048793\)

\(- 0.194564\)

\(- 0.194543\)

\(0.907075\)

\(0.907053\)

\(0.257986\)

\(0.257981\)

\(0.50\)

\(- 1.093097\)

\(- 1.093081\)

\(- 0.465205\)

\(- 0.465187\)

\(0.842360\)

\(0.842323\)

\(0.451671\)

\(0.451623\)

\(0.75\)

\(- 1.134485\)

\(- 1.134456\)

\(- 0.794622\)

\(- 0.794602\)

\(0.792308\)

\(0.792293\)

\(0.612049\)

\(0.612021\)

\(1.00\)

\(- 1.173720\)

\(- 1.173698\)

\(- 1.173720\)

\(- 1.173711\)

\(0.751527\)

\(0.751502\)

\(0.751527\)

\(0.751511\)