Table 3 Hyperparameter tuning via randomized search with tenfold cross-validation.

From: Personalized prediction of delayed graft function for recipients of deceased donor kidney transplants with machine learning

Model

ROC-AUC ± SD

Number of searches done

Best parameters

BL

0.703 ± 0.011

NA

None

LR

0.728 ± 0.012

NA

None

RF

0.735 ± 0.009

30

mtry = 3

EN

0.728 ± 0.012

100

alpha = 0.883, lambda = 0.00142

XGB

0.742 ± 0.009

100

nrounds = 668, max_depth = 6, eta = 0.0347, gamma = 5.703, subsample = 0.569, colsample_bytree = 0.699, rate_drop = 0.350, skip_drop = 0.805, min_child_weight = 7

ANN

0.737 ± 0.007

100

size = 20, decay = 8.795, number of layer = 1, entropy = TRUE, abstol = 1.0e−4, reltol = 1.0e−8, maxit = 1.0e6

  1. ROC-AUC area under the receiver operating characteristic curve, SD standard deviation, BL baseline, LR logistic regression, EN elastic net, RF random forest, XGB extreme gradient boosting, ANN artificial neural network.