Table 2 The list of the detailed features used in the study.

From: The importance of feature aggregation in radiomics: a head and neck cancer study

Family

Feature

Quantitative feature

Filter-based

Laplacian of Gaussian

Gabor

Sobel

Sigma \(= 2\hbox {mm}\), radius \(= 4\hbox {mm}\)

Sigma \(= 11/3\), freq. \(= 0.4\), radius \(= 4 \,\hbox {mm}\)

Kernel size = 3 × 3 × 3

Grey-level texture matrices

GLRLM

Radius \(= 2 \,\hbox {mm}\)

Angles \(=\) Half of all directions (3D), symmetrical

Discretization \(= 64\) grey levels

ShortRunEmphasis

LongRunEmphasis

GreyLevelNonuniformity

RunLengthNonuniformity

LowGreyLevelRunEmphasis

HighGreyLevelRunEmphasis

ShortRunLowGreyLevelEmphasis

ShortRunHighGreylevelEmphasis

LongRunLowGreyLevelEmphasis

LongRunHighGreyLevelEmphasis

GLCM

Radius \(= 2 \,\hbox {mm}\)

Angles \(=\) Half of all directions (3D), symmetrical

Discretization \(= 64\) grey levels

Energy

InverseDifferenceMoment

Entropy

HaralickCorrelation

ClusterShade

ClusterProminence

Inertia

Correlation