Table 6 The consequent parameters of ANFIS for prediction of the pressure.

From: Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe

Output MFs

Output MFs yype

n

o

p

q

r

s

'out1mf1'

'linear'

0.275497

0.82292

− 1532.57

34.17052

− 0.0002

1525.282

'out1mf2'

'linear'

0.52357

− 0.44146

− 1532.47

34.03126

− 0.00413

1526.564

'out1mf3'

'linear'

0.224109

0.988455

− 1734.84

25.32453

− 0.00102

1685.098

'out1mf4'

'linear'

− 0.91572

1.709538

− 1736.93

25.25651

0.003761

1683.852

'out1mf5'

'linear'

0.002649

− 0.43341

− 1534.15

1.164731

− 0.00089

1534.194

'out1mf6'

'linear'

− 0.28313

0.454

− 1534.1

1.375231

0.000408

1533.682

'out1mf7'

'linear'

− 0.15027

− 0.6456

− 1735.8

1.113383

0.004175

1732.314

'out1mf8'

'linear'

0.659498

− 0.64732

− 1737.69

1.248364

0.002532

1734.363

'out1mf9'

'linear'

− 0.00102

0.003052

− 0.75118

0.836047

4.339269

0.02237

'out1mf10'

'linear'

0.000449

0.000544

− 0.62938

0.586339

5.216454

0.039553

'out1mf11'

'linear'

− 0.0059

0.001832

− 0.81055

− 0.6955

5.137623

0.037629

'out1mf12'

'linear'

− 0.00043

0.000547

− 0.34753

− 0.53658

3.804881

0.020145

'out1mf13'

'linear'

− 0.00403

0.000384

0.69981

− 1.05822

0.61711

− 0.01135

'out1mf14'

'linear'

− 0.00417

0.000289

0.663309

− 1.86711

− 0.28804

0.001906

'out1mf15'

'linear'

− 6.74E−05

0.000251

0.838159

0.990119

− 0.04189

− 0.02188

'out1mf16'

'linear'

− 0.00322

3.46E−05

0.415818

1.835265

0.711474

0.030256

'out1mf17'

'linear'

− 8.31E−14

1.18E−14

− 5.45E−12

− 4.81E−12

− 5.38E−09

− 1.76E−11

'out1mf18'

'linear'

5.20E−14

5.01E−14

7.73E−12

1.89E−11

3.30E−09

1.03E−11

'out1mf19'

'linear'

− 1.72E−14

− 1.05E−14

− 3.08E−12

− 4.75E−12

− 1.11E−09

− 3.45E−12

'out1mf20'

'linear'

4.10E−14

2.27E−14

4.52E−12

2.07E−13

2.68E−09

8.34E−12

'out1mf21'

'linear'

− 1.49E−14

− 3.93E−15

2.25E−12

− 8.72E−12

− 9.73E−10

− 3.25E−12

'out1mf22'

'linear'

9.94E−14

3.70E−14

1.20E−11

2.86E−12

6.35E−09

2.01E−11

'out1mf23'

'linear'

− 4.60E−14

− 1.22E−14

− 6.35E−12

− 1.26E−11

− 3.09E−09

− 1.01E−11

'out1mf24'

'linear'

1.08E−13

1.55E−14

1.71E−11

4.34E−11

6.83E−09

2.16E−11

'out1mf25'

'linear'

− 3.22E−21

− 8.95E−22

− 9.30E−19

− 2.41E−19

− 2.33E−16

− 7.59E−19

'out1mf26'

'linear'

2.53E−20

5.01E−21

2.03E−18

4.96E−18

1.64E−15

5.14E−18

'out1mf27'

'linear'

− 4.61E−21

− 9.84E−22

− 9.51E−19

− 1.89E−18

− 3.13E−16

− 9.97E−19

'out1mf28'

'linear'

1.47E−20

2.40E−21

9.09E−19

1.86E−18

9.31E−16

2.91E−18

'out1mf29'

'linear'

− 6.97E−21

− 2.73E−21

− 5.37E−19

− 2.12E−18

− 4.74E−16

− 1.54E−18

'out1mf30'

'linear'

2.32E−20

4.68E−21

2.74E−18

2.11E−18

1.53E−15

4.79E−18

'out1mf31'

'linear'

− 1.21E−20

− 3.42E−21

− 1.59E−18

− 3.57E−18

− 8.19E−16

− 2.66E−18

'out1mf32'

'linear'

1.38E−20

2.45E−21

1.94E−18

4.38E−18

9.02E−16

2.83E−18