Figure 5
From: Dynamical system analysis of FLRW models with Modified Chaplygin gas

The flat submanifold. Neither \(\gamma\) nor \(\alpha\) changes the structure of it. Here, dots denote the solutions of the system; F, dS, CH and CD represent Flat FL solution\((\Omega =1, \Omega _\Lambda =0, \Omega _A=0, k=0)\), de Sitter solution\((\Omega =0, \Omega _\Lambda =1, \Omega _A=0, k=0)\), Chaplygin Gas solution\((\Omega =1,\Omega _\Lambda =0,\Omega _A=\root \alpha + 1 \of {\gamma }, k=0\)) and Chaplygin-de Sitter solution line \((\Omega =\Omega ,\Omega _\Lambda =1-\Omega ,\Omega _A=\root \alpha + 1 \of {\gamma }\Omega ,k=0)\), respectively. Lines go from red to black. (MATLAB ver. R2019b).