Table 1 Properties of the equilibrium points for k = 0, \(-1\).
From: Dynamical system analysis of FLRW models with Modified Chaplygin gas
\((\Omega , \Omega _\Lambda ,\Omega _A)\) | Eigenvalues | Stability | |||||
|---|---|---|---|---|---|---|---|
\(\lambda _1\) | \(\lambda _2\) | \(\lambda _3\) | \(\gamma\) > 2/3 | \(\gamma < 2/3\) | |||
M | (0, 0, 0) | \(H>0\) | \(2-3\gamma\) | 2 | 2 | Saddle | Source |
\(H<0\) | \(3\gamma -2\) | \(-2\) | \(-2\) | Saddle | Sink | ||
F | (1, 0, 0) | \(H>0\) | \(3\gamma -2\) | \(3\gamma\) | \(3\gamma\) | Source | Saddle |
\(H<0\) | \(2-3\gamma\) | \(-3\gamma\) | \(-3\gamma\) | Sink | Saddle | ||
CD | \((\Omega ,1-\Omega ,\root \alpha + 1 \of {\gamma }\Omega )\) | \(H>0\) | \(-2\) | 0 | \(-3\gamma (\alpha +1)\) | – | – |
\(H<0\) | 2 | 0 | \(3\gamma (\alpha +1)\) | – | – | ||