Table 1 Properties of the equilibrium points for k = 0, \(-1\).

From: Dynamical system analysis of FLRW models with Modified Chaplygin gas

 

\((\Omega , \Omega _\Lambda ,\Omega _A)\)

 

Eigenvalues

Stability

\(\lambda _1\)

\(\lambda _2\)

\(\lambda _3\)

\(\gamma\) > 2/3

\(\gamma < 2/3\)

M

(0, 0, 0)

\(H>0\)

\(2-3\gamma\)

2

2

Saddle

Source

\(H<0\)

\(3\gamma -2\)

\(-2\)

\(-2\)

Saddle

Sink

F

(1, 0, 0)

\(H>0\)

\(3\gamma -2\)

\(3\gamma\)

\(3\gamma\)

Source

Saddle

\(H<0\)

\(2-3\gamma\)

\(-3\gamma\)

\(-3\gamma\)

Sink

Saddle

CD

\((\Omega ,1-\Omega ,\root \alpha + 1 \of {\gamma }\Omega )\)

\(H>0\)

\(-2\)

0

\(-3\gamma (\alpha +1)\)

\(H<0\)

2

0

\(3\gamma (\alpha +1)\)