Table 1 Maxwell’s equation in the time domain and frequency domain.

From: Performance simulation of polymer-based nanoparticle and void dispersed photonic structures for radiative cooling

Time domain

Frequency domain

 

\(\nabla \times \vec{E} + \frac{{\partial \vec{B}}}{\partial t} = 0\)

\(\nabla \times \vec{E} + j\omega \mu \vec{H} = 0\)

(1)

\(\nabla \times \vec{H} - \frac{{\partial \vec{D}}}{\partial t} = \vec{J}\)

\(\nabla \times \vec{H} - j\omega \mu \vec{E} = \vec{J}\)

(2)

\(\nabla \cdot \vec{B} = 0\)

\(\nabla \cdot \vec{B} = 0\)

(3)

\(\nabla \cdot \vec{D} = \rho\)

\(\nabla \cdot \vec{D} = \rho\)

(4)

\(\vec{D} = \varepsilon \vec{E} = \varepsilon_{0} \vec{E} + \vec{P}\)

\(\vec{D} = \varepsilon \vec{E} = \varepsilon_{0} \vec{E} + \vec{P}\)

(5)

\(\vec{B} = \mu \vec{H} = \mu_{0} \vec{H} + \vec{M}\)

\(\vec{B} = \mu \vec{H} = \mu_{0} \vec{H} + \vec{M}\)

(6)