Table 5 The hyper-parameters of the proposed CNN based on the default mode.

From: A deep learning framework combined with word embedding to identify DNA replication origins

Hyper-parameter

Value

Input length

\(L_{max}\)

Batch size

64

Embedding layer

\(L_{max} \times 300\), Trainable = False,

Num_Channels = 1

Convolution blocks

\([2,\ 3,\ 4]\), \(128 \times 3\), ReLu

Pooling blocks

Max-pooling

Fully connected layer units

\(128 \times 3\)

Regularization

L2

Learning rate

0.001 with decay rate 0.9

Optimizer

Adam