Table 3 Classification results obtained with different deep feature sets using our proposed MRFGRO algorithm.

From: MRFGRO: a hybrid meta-heuristic feature selection method for screening COVID-19 using deep features

Feature set

SARS-CoV-2 CT-scan dataset

Covid-CT dataset

MOSMED dataset

No. of selected features

Accuracy (%)

No. of selected features

Accuracy (%)

No. of selected features

Accuracy (%)

GoogLeNet

780

94.47

680

96.22

811

91.91

ResNet18

445

92.17

328

96.91

378

90.11

ResNet152

1119

90.99

998

94.29

1242

91.49

VGG19

12,400

87.77

9442

85.48

15,987

81.24

VGG16

17,809

85.47

14,899

86.78

12,597

81.24

ResNet18+GoogLeNet

875

99.42

756

99.15

612

95.57

ResNet152+GoogLeNet

1180

97.71

987

96.18

1001

91.23

ResNet18+VGG16

15,489

90.02

14,801

92.24

17,589

92.21

GoogLeNet+VGG19

16,029

91.19

11,549

90.42

18,900

78.48

ResNet152+VGG19

15,014

88.18

17,802

85.44

11,259

80.04

ResNet18+GoogLeNet+VGG16

9002

86.48

15,809

84.48

18,792

79.99

ResNet152+GoogLeNet +VGG19

16,891

87.62

18,722

81.19

11,589

78.48

  1. Best results are given in Bold.