Table 5 Performance comparison of the proposed MRFGRO based FS algorithm with some popular FS algorithms.

From: MRFGRO: a hybrid meta-heuristic feature selection method for screening COVID-19 using deep features

Optimization algorithm

SARS-CoV-2 CT-scan dataset

COVID-CT dataset

MOSMED dataset

No. of features

Accuracy (%)

No. of features

Accuracy (%)

No. of features

Accuracy (%)

GA

942

92.43

779

91.11

802

91.19

PSO

739

90.15

855

94.49

864

93.29

HAS

1011

94.17

814

92.23

743

92.29

ASO

898

97.57

957

95.59

601

91.11

EO

917

96.69

913

96.28

698

90.19

GRO

868

97.79

809

95.79

713

93.28

MRO

997

97.84

877

96.78

759

94.47

GA+EO

942

95.48

779

95.28

789

94.21

PSO+ASO

1007

97.84

885

92.31

728

91.37

HAS+GRO

941

95.24

855

95.48

738

91.27

MRFGRO

875

99.42

756

99.15

612

95.57

  1. Best accuracies and number of features selected corresponding to those accuracies are given in bold.