Table 4 RNN architecture using SimpleRNN neurons for CarboxE site identification.
No | Layer | No. of weights |
|---|---|---|
1 | Embedding layer | \((2320 = 460)\) |
2 | R1: Recurrent layer with 14 simple RNN units and dropout regularization with 20% probability | \((3514= 490)\) |
3 | Dense layer with 8 units | \((14+1)8 = 120\) |
4 | Output layer | \((8+1)1 = 9\) |