Table 6 Parameter estimates of artificial neural networks (ANN), decision trees (DT), random forest (RF), support-vector machine (SVM), logistic regression (LGR), and linear regression (LNR) machine-learning models used in classification and regression analyses.

From: Modeling risk of Sclerotinia sclerotiorum-induced disease development on canola and dry bean using machine learning algorithms

Study/analyses

Models

ANN

DT

RF

SVM

LGR/LNR

Canola/classification

Hidden layers = 1

Pruning = none

Number of trees = 5

Loss function = 110.0, ε = 1.0

Regularization = ridge (L2)

Neurons = 10

Node splitting = 95%

Replicable training = yes

Kernel = RBF, exp(− auto|x–y|2)

Cost strength = 5

Activation function = tanh

Tree depth = unlimited

Tree depth = unlimited

Numerical tolerance = 0.0001

 

α (learning rate) = 0.5

 

Max number of considered features = unlimited

Iteration = unlimited

 

Max iteration = 100

    

Dry bean/classification

Hidden layers = 1

Pruning = none

Number of trees = 16

Loss function = 0.8, ε = 0.9

Regularization = ridge (L2)

Neurons = 5

Node splitting = 95%

Replicable training = yes

Kernel = RBF, exp(− auto|x–y|2)

Cost strength = 50

Activation function = tanh

Tree depth = unlimited

Tree depth = unlimited

Numerical tolerance = 0.0001

 

α (learning rate) = 0.7

 

Max number of considered features = unlimited

Iteration = unlimited

 

Max iteration = 100

    

Canola/regression

Hidden layers = 1

Pruning = none

Number of trees = 10

Loss function = 1.0, ε = 0.8

α (regularization parameter) = 1

Neurons = 200

Node splitting = 95%

Replicable training = yes

Kernel = Linear

 

Activation function = tanh

Tree depth = unlimited

Tree depth = unlimited

Numerical tolerance = 0.0001

 

α (learning rate) = 0.7

 

Max number of considered features = unlimited

Iteration = unlimited

 

Max iteration = 2000

    

Dry bean/regression

Hidden layers = 2

Pruning = none

Number of trees = 10

Loss function = 1.0, ε = 0.8

α (regularization parameter) = 1

Neurons = 20

Node splitting = 95%

Replicable training = yes

Kernel = linear

 

Activation function = logistic

Tree depth = unlimited

Tree depth = unlimited

Numerical tolerance = 0.0001

 

α (learning rate) = 1

 

Max number of considered features = unlimited

Iteration = unlimited

 

Max iteration = 2000

    
  1. LGR was used in classification and LNR in regression analyses.