Table 1 Parameter estimated from simulated time series of \(T_{s}/\tau _{1}=2000\) and time step \(\Delta t/\tau _{S}=0.1\) by fitting the corresponding ACF over various range of time lags. Clearly, the estimations are close to all the input parameters when the fitting range lies in between from 0–0.5 to 0–1 s. The input parameters in the simulation are the same as in Fig. 1.
From: Bayesian inference of the viscoelastic properties of a Jeffrey’s fluid using optical tweezers
Fitting range (s) | \(\eta _{0}^{*}\pm 1\sigma\) (mPa s) | \(\eta _{1}^{*} \pm 1\sigma\) (mPa s) | \(\tau _{1}^{*}\pm 1\sigma\) (s) |
|---|---|---|---|
0–0.1 | \(1.0\pm 0.0\) | \(440.0\pm 0.1\) | \(4.6\pm 2.0\times 10^{-3}\) |
0–0.5 | \(1.0\pm 1.0\times 10^{-3}\) | \(100\pm 130\times 10^{-3}\) | \(1.0\pm 0.8\times 10^{-3}\) |
0–1 | \(1.1\pm 2.4\times 10^{-3}\) | \(110\pm 15.0\times 10^{-3}\) | \(1.1\pm 0.8\times 10^{-3}\) |
0–5 | \(5.0\pm 0.1\) | \(110.0\pm 0.1\) | \(1.1\pm 0.2\times 10^{-3}\) |
0–10 | \(2.5\pm 0.0\) | \(100.0\pm 0.0\) | \(1.1\pm 1.0\times 10^{-3}\) |
0–20 | \(30.0\pm 0.1\) | \(70.0\pm 0.1\) | \(1.3\pm 5.0\times 10^{-3}\) |
0–30 | \(50.0\pm 0.1\) | \(60.0\pm 0.1\) | \(1.9\pm 13.0\times 10^{-3}\) |