Table 3 The performance of the best artificial neural networks for the forecast of NO2 concentration in the air.
From: Artificial intelligence accuracy assessment in NO2 concentration forecasting of metropolises air
Function | Test set | Train set | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
activation | Training | Structure | R2 | MSE | RMSE | MAE | R2 | MSE | RMSE | MAE |
Logsig-Logsig-Purelin | LM | 23-26-26-1 | 0.741 | 0.235 | 0.485 | 0.355 | 0.879 | 0.125 | 0.354 | 0.252 |
Tansig-Tansig-Purelin | GDM | 23-22-22-1 | 0.562 | 0.386 | 0.621 | 0.468 | 0.564 | 1.631 | 1.277 | 0.521 |
Tansig-Purelin | BQN | 23-26-1 | 0.763 | 0.208 | 0.456 | 0.327 | 0.836 | 0.163 | 0.403 | 0.278 |
Tangsig-Purelin | CGB | 23-26-1 | 0.742 | 0.232 | 0.481 | 0.334 | 0.877 | 0.122 | 0.35 | 0.25 |
Tansig-Tansig-Purelin | GDA | 23-19-19-1 | 0.722 | 0.246 | 0.496 | 0.341 | 0.821 | 0.181 | 0.425 | 0.294 |
Logsig-Logsig-Purelin | CGP | 23-24-24-1 | 0.711 | 0.254 | 0.504 | 0.353 | 0.829 | 0.172 | 0.414 | 0.288 |