Table 5 Box–Behnken design with 5 center points is presented as real and coded values. Against each combination of parameters the response \(C_{fr} Re_{r}^{1/2}\), \(C_{{g\theta^{*} }} Re_{r}^{1/2}\) and \(\;Nu_{r} Re_{r}^{ - 1/2}\) is also presented.

From: Application of response surface methodology on the nanofluid flow over a rotating disk with autocatalytic chemical reaction and entropy generation optimization

Runs

Real values

Coded values

Response

\(\phi\)

M

\(\omega\)

A

B

C

\(C_{fr} Re_{r}^{1/2}\)

\(C_{{g\theta^{*} }} Re_{r}^{1/2}\)

\(\;Nu_{r} Re_{r}^{ - 1/2}\)

1

0.01

1

3.5

 − 1

0

1

1.3293

 − 7.3007

1.2049

2

0.01

1

0.5

 − 1

0

 − 1

 − 0.5936

 − 0.9850

1.1126

3

0.05

1

2

0

0

0

0.0394

 − 4.2843

1.4555

4

0.09

0.5

2

1

 − 1

0

0.1402

 − 4.3083

1.7973

5

0.05

1

2

0

0

0

0.0394

 − 4.2843

1.4555

6

0.09

1

3.5

1

0

1

1.5428

 − 8.3151

1.8701

7

0.05

1

2

0

0

0

0.0394

 − 4.2843

1.4555

8

0.05

0.5

0.5

0

 − 1

 − 1

 − 0.5819

 − 0.9813

1.4215

9

0.05

1.5

0.5

0

1

 − 1

 − 0.6785

 − 1.1137

1.4122

10

0.09

1

0.5

1

0

 − 1

0.0477

 − 1.1202

1.7414

11

0.05

1

2

0

0

0

0.0394

 − 4.2843

1.4555

12

0.05

0.5

3.5

0

 − 1

1

1.5818

 − 7.3799

1.5442

13

0.05

1

2

0

0

0

0.0394

 − 4.2843

1.4555

14

0.05

1.5

3.5

0

1

1

1.2942

 − 8.1757

1.5144

15

0.09

1.5

2

1

1

0

 − 0.0362

 − 4.8294

1.7767

16

0.01

0.5

2

 − 1

 − 1

0

0.1169

 − 3.7739

1.1526

17

0.05

1

2

0

0

0

0.0394

 − 4.2843

1.4555

18

0.01

1.5

2

 − 1

1

0

 − 0.0450

 − 4.2551

1.1381

19

0.01

1

3.5

 − 1

0

1

1.3293

 − 7.3007

1.2049