Table 3 Configuration information of different CNN models. The convolutional layer parameters are denoted as Conv < Layer i (1, 2, 3) >—< number of kernels > .

From: A hybrid deep neural network for classification of schizophrenia using EEG Data

A < 2,0,0 > 

B < 2,2,0 > 

C < 2,2,1 > 

D < 4,2,1 > 

Input (\(32\times 32\) 3-channel EEG data)

   

Conv1–32

Conv1–32

Conv1–32

Conv1–32

Conv1–32

Conv1–32

Conv1–32

Conv1–32

Conv1–32

   

Conv1–32

Max-pooling1

 

Conv2–64

Conv2–64

Conv2–64

 

Conv2–64

Conv2–64

Conv2–64

 

Max-pooling2

  

Conv3–128

Conv3–128

  

Max-pooling3

FC-512